skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Molecular insights into the surface-catalyzed secondary nucleation of amyloid-β 40 (Aβ 40 ) by the peptide fragment Aβ 16–22
Understanding the structural mechanism by which proteins and peptides aggregate is crucial, given the role of fibrillar aggregates in debilitating amyloid diseases and bioinspired materials. Yet, this is a major challenge as the assembly involves multiple heterogeneous and transient intermediates. Here, we analyze the co-aggregation of Aβ 40 and Aβ 16–22 , two widely studied peptide fragments of Aβ 42 implicated in Alzheimer’s disease. We demonstrate that Aβ 16–22 increases the aggregation rate of Aβ 40 through a surface-catalyzed secondary nucleation mechanism. Discontinuous molecular dynamics simulations allowed aggregation to be tracked from the initial random coil monomer to the catalysis of nucleation on the fibril surface. Together, the results provide insight into how dynamic interactions between Aβ 40 monomers/oligomers on the surface of preformed Aβ 16–22 fibrils nucleate Aβ 40 amyloid assembly. This new understanding may facilitate development of surfaces designed to enhance or suppress secondary nucleation and hence to control the rates and products of fibril assembly.  more » « less
Award ID(s):
1743432
PAR ID:
10108179
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
5
Issue:
6
ISSN:
2375-2548
Page Range / eLocation ID:
eaav8216
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Amyloid-β (Aβ) peptide aggregation plays a central role in the progress of Alzheimer’s disease (AD), of which Aβ-deposited extracellular amyloid plaques are a major hallmark. The brain micro-environmental variation in AD patients, like local acidification, increased ionic strength, or changed metal ion levels, cooperatively modulates the aggregation of the Aβ peptides. Here, we investigate the multivariate effects of varied pH, ionic strength and Zn 2+ on Aβ 40 fibrillation kinetics. Our results reveal that Aβ fibrillation kinetics are strongly affected by pH and ionic strength suggesting the importance of electrostatic interactions in regulating Aβ 40 fibrillation. More interestingly, the presence of Zn 2+ ions can further alter or even reserve the role of pH and ionic strength on the amyloid fibril kinetics, suggesting the importance of amino acids like Histidine that can interact with Zn 2+ ions. Both pH and ionic strength regulate the secondary nucleation processes, however regardless of pH and Zn 2+ ions, ionic strength can also modulate the morphology of Aβ 40 aggregates. These multivariate effects in bulk solution provide insights into the correlation of pH-, ionic strength- or Zn 2+ ions changes with amyloid deposits in AD brain and will deepen our understanding of the molecular pathology in the local brain microenvironment. 
    more » « less
  2. The aggregation of monomeric amyloid β protein (Aβ) peptide into oligomers and amyloid fibrils in the mammalian brain is associated with Alzheimer’s disease. Insight into the thermodynamic stability of the Aβ peptide in different polymeric states is fundamental to defining and predicting the aggregation process. Experimental determination of Aβ thermodynamic behavior is challenging due to the transient nature of Aβ oligomers and the low peptide solubility. Furthermore, quantitative calculation of a thermodynamic phase diagram for a specific peptide requires extremely long computational times. Here, using a coarse-grained protein model, molecular dynamics (MD) simulations are performed to determine an equilibrium concentration and temperature phase diagram for the amyloidogenic peptide fragment Aβ16–22. Our results reveal that the only thermodynamically stable phases are the solution phase and the macroscopic fibrillar phase, and that there also exists a hierarchy of metastable phases. The boundary line between the solution phase and fibril phase is found by calculating the temperature-dependent solubility of a macroscopic Aβ16–22fibril consisting of an infinite number of β-sheet layers. This in silico determination of an equilibrium (solubility) phase diagram for a real amyloid-forming peptide, Aβ16–22, over the temperature range of 277–330 K agrees well with fibrillation experiments and transmission electron microscopy (TEM) measurements of the fibril morphologies formed. This in silico approach of predicting peptide solubility is also potentially useful for optimizing biopharmaceutical production and manufacturing nanofiber scaffolds for tissue engineering. 
    more » « less
  3. The aggregation of amyloids into toxic oligomers is believed to be a key pathogenic event in the onset of Alzheimer's disease. Peptidomimetic modulators capable of destabilizing the propagation of an extended network of β-sheet fibrils represent a potential intervention strategy. Modifications to amyloid-beta (Aβ) peptides derived from the core domain have afforded inhibitors capable of both antagonizing aggregation and reducing amyloid toxicity. Previous work from our laboratory has shown that peptide backbone amination stabilizes β-sheet-like conformations and precludes β-strand aggregation. Here, we report the synthesis of N -aminated hexapeptides capable of inhibiting the fibrillization of full-length Aβ 42 . A key feature of our design is N -amino substituents at alternating backbone amides within the aggregation-prone Aβ 16–21 sequence. This strategy allows for maintenance of an intact hydrogen-bonding backbone edge as well as side chain moieties important for favorable hydrophobic interactions. An N -amino scan of Aβ 16–21 resulted in the identification of peptidomimetics that block Aβ 42 fibrilization in several biophysical assays. 
    more » « less
  4. Abstract Amyloid‐beta (Aβ) peptides, primarily Aβ40 and Aβ42, are central to the formation of amyloid plaques, a pathological hallmark of Alzheimer's disease (AD). These peptides, derived from the amyloid precursor protein (APP), are aggregation prone and neurotoxic. Experimental studies aimed at understanding Aβ aggregation and interaction require pure, monomeric peptides with the native sequences, including the absence of an N‐terminal methionine. We present an optimized protocol for producing recombinant human Aβ40 and Aβ42 using a SUMO fusion system inEscherichia coli. Cleavage of the SUMO tag enables recovery of native‐sequence peptides, producing physiologically relevant monomers with high yield and purity. This method eliminates the need for chemical synthesis and offers a reliable and cost‐effective approach to producing recombinant Aβ suitable for aggregation studies, structural analyses, and interaction assays. The resulting peptides closely mimic endogenous Aβ, facilitating accurate models of Alzheimer's disease pathogenesis and supporting future therapeutics development. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Expression and purification of Aβ40 and Aβ42 fromEscherichia coli 
    more » « less
  5. Aggregation of misfolded oligomeric amyloid-beta (Aβ) peptides on lipid membranes has been identified as a primary event in Alzheimer's pathogenesis. However, the structural and dynamical features of this membrane assisted Aβ aggregation have not been well characterized. The microscopic characterization of dynamic molecular-level interactions in peptide aggregation pathways has been challenging both computationally and experimentally. In this work, we explore differential patterns of membrane-induced Aβ 16–22 (K–L–V–F–F–A–E) aggregation from the microscopic perspective of molecular interactions. Physics-based coarse-grained molecular dynamics (CG-MD) simulations were employed to investigate the effect of lipid headgroup charge – zwitterionic (1-palmitoyl-2-oleoyl- sn-glycero -3-phosphocholine: POPC) and anionic (1-palmitoyl-2-oleoyl- sn-glycero -3-phospho- l -serine: POPS) – on Aβ 16–22 peptide aggregation. Our analyses present an extensive overview of multiple pathways for peptide absorption and biomechanical forces governing peptide folding and aggregation. In agreement with experimental observations, anionic POPS molecules promote extended configurations in Aβ peptides that contribute towards faster emergence of ordered β-sheet-rich peptide assemblies compared to POPC, suggesting faster fibrillation. In addition, lower cumulative rates of peptide aggregation in POPS due to higher peptide–lipid interactions and slower lipid diffusion result in multiple distinct ordered peptide aggregates that can serve as nucleation seeds for subsequent Aβ aggregation. This study provides an in-silico assessment of experimentally observed aggregation patterns, presents new morphological insights and highlights the importance of lipid headgroup chemistry in modulating the peptide absorption and aggregation process. 
    more » « less