skip to main content

Title: Centring Fish Agency in Coastal Dam Removal and River Restoration
This article considers the agentic capacity of fish in dam removal decisions. Pairing new materialist explorations of agency with news media, policy documents, and interviews related to a suite of dam decisions in a New England, USA watershed, we identify the ways that river herring seem constrained through technocratic discourse to particular human-defined roles in dam removal discussions. We suggest, meanwhile, that existing human relationships with salmonids like brook trout might serve as a bridge for public stakeholders and restoration managers to recognise the agentic creativity of fish in dam removal and river restoration decisions.
; ;
Award ID(s):
Publication Date:
Journal Name:
Water alternatives
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Aging infrastructure and growing interests in river restoration have led to a substantial rise in dam removals in the United States. However, the decision to remove a dam involves many complex trade-offs. The benefits of dam removal for hazard reduction and ecological restoration are potentially offset by the loss of hydroelectricity production, water supply, and other important services. We use a multiobjective approach to examine a wide array of trade-offs and synergies involved with strategic dam removal at three spatial scales in New England. We find that increasing the scale of decision-making improves the efficiency of trade-offs among ecosystem services,more »river safety, and economic costs resulting from dam removal, but this may lead to heterogeneous and less equitable local-scale outcomes. Our model may help facilitate multilateral funding, policy, and stakeholder agreements by analyzing the trade-offs of coordinated dam decisions, including net benefit alternatives to dam removal, at scales that satisfy these agreements.

    « less
  2. While hydroelectric dams play a significant role in meeting the increasing energy demand worldwide, they pose a significant risk to riverine biodiversity and food security for millions of people that mainly depend upon floodplain fisheries. Dam structures could affect fish populations both directly and indirectly through loss of accessible spawning and rearing habitat, degradation of habitat quality (e.g., changes in temperature and discharge), and/or turbine injuries. However, our understandings of the impacts of dam life span and the initial fishery conditions on restoration time and hence the dynamic hydropower (energy)-fish (food) nexus remain limited. In this study, we explored themore »temporal energy-food tradeoffs associated with a hydroelectric dam located in the Penobscot River basin of the United States. We investigated the influence of dam life span, upstream passage rate, and downstream habitat area on the energy-food tradeoffs using a system dynamics model. Our results show that around 90% of fish biomass loss happen within 5 years of dam construction. Thereafter, fish decline slowly stabilizes and approaches the lowest value at around the 20th year after dam construction. Fish restoration period is highly sensitive even to a short period of blockage. The biomass of alewife spawners need 18 years to recover with only 1-year of blockage to the upstream critical habitats. Hydropower generation and loss of fish biomass present a two-segment linear relationship under changes in dam life span. When the dam life span is less than 5 years, generating 1 GWh energy cause around 0.04 million kg loss of fish biomass; otherwise, the loss of fish biomass is 0.02 million kg. The loss of fish biomass could be significantly decreased with minimal energy loss through increasing upstream passage rate and/or the size of downstream habitat area.« less
  3. The nexus of food, energy, and water systems offers a meaningful lens to evaluate hydroelectric dam removal decisions. Maintaining adequate power supplies and flourishing fish populations hangs on the balance of managing the tradeoffs of water resource management. Aside from energy adequacy, substituting hydropower with other renewable energy sources impacts the overall energy dispatch behavior of the grid, including emissions of existing fossil fuels. This study extends earlier work in the literature to evaluate the adequacy impact to the power supply by removing four Lower Snake River dams in the Columbia River Basin in favor of supporting migratory salmon populations.more »The authors explore the climate performance, i.e., fossil fuel dispatch changes, of simulated renewable substitution portfolios to supplement performance metrics alongside adequacy and initial investment metrics. The study finds that including the climate metric greatly influences the favorability of some alternative portfolios that would otherwise be overlooked, with some portfolios improving climate mitigation efforts by reducing emissions over the baseline scenario. The contribution is in advancing a straightforward and supplementary climate performance method that can accompany any energy portfolio analysis.« less
  4. In Mekong riparian countries, hydropower development provides energy, but also threatens biodiversity, ecosystems, food security, and an unparalleled freshwater fishery. The Sekong, Sesan, and Srepok Rivers (3S Basin) are major tributaries to the Lower Mekong River (LMB), making up 10% of the Mekong watershed but supporting nearly 40% of the fish species of the LMB. Forty-five dams have been built, are under construction, or are planned in the 3S Basin. We completed a meta-analysis of aquatic and riparian environmental losses from current, planned, and proposed hydropower dams in the 3S and LMB using 46 papers and reports from the pastmore »three decades. Proposed mainstem Stung Treng and Sambor dams were not included in our analysis because Cambodia recently announced a moratorium on mainstem Mekong River dams. More than 50% of studies evaluated hydrologic change from dam development, 33% quantified sediment alteration, and 30% estimated fish production changes. Freshwater fish diversity, non-fish species, primary production, trophic ecology, and nutrient loading objectives were less commonly studied. We visualized human and environmental tradeoffs of 3S dams from the reviewed papers. Overall, Lower Sesan 2, the proposed Sekong Dam, and planned Lower Srepok 3A and Lower Sesan 3 have considerable environmental impacts. Tradeoff analyses should include environmental objectives by representing organisms, habitats, and ecosystems to quantify environmental costs of dam development and maintain the biodiversity and extraordinary freshwater fishery of the LMB.« less
  5. Advances in genetics and genomics have raised new questions in trout restoration and management, specifically about species identity and purity, which fish to value, and where these fish belong. This paper examines how this molecular turn in fisheries management is influencing wild and native trout policy in Colorado. Examples from two small Colorado watersheds, Bear Creek and Sand Creek, illustrate how framing trout as genetic bodies can guide managers to care for or kill trout populations in the interest of rectifying decades of genetic disruption caused by human activity. While trout management has typically relied on human intervention, the turnmore »to genetic science is prompting new classifications of lineage and taxa, altering long-standing conservation priorities, and reorienting the manipulation of biological processes such as reproduction and dispersal. As a result, other social and ecological factors may be pushed to the margins of management decisions. These changes warrant greater conversation about the consequences of molecular analyses and the values embedded in trout science and conservation more broadly.« less