skip to main content

Title: Artifact propagation in electrocorticography stimulation
Introduction:Current brain-computer interfaces (BCIs) primarily rely on visual feedback. However, visual feedback may not be sufficient for applications such as movement restoration, where somatosensory feedback plays a crucial role. For electrocorticography (ECoG)-based BCIs, somatosensory feedback can be elicited by cortical surface electro-stimulation [1]. However, simultaneous cortical stimulation and recording is challenging due to stimulation artifacts. Depending on the orientation of stimulating electrodes, their distance to the recording site, and the stimulation intensity, these artifacts may overwhelm the neural signals of interest and saturate the recording bioamplifiers, making it impossible to recover the underlying information [2]. To understand how these factors affect artifact propagation, we performed a preliminary characterization of ECoG signals during cortical stimulation.Materials/Methods/ResultsECoG electrodes were implanted in a 39-year old epilepsy patient as shown in Fig. 1. Pairs of adjacent electrodes were stimulated as a part of language cortical mapping. For each stimulating pair, a charge-balanced biphasic square pulse train of current at 50 Hz was delivered for five seconds at 2, 4, 6, 8 and 10 mA. ECoG signals were recorded at 512 Hz. The signals were then high-pass filtered (≥1.5 Hz, zero phase), and the 5-second stimulation epochs were segmented. Within each epoch, artifact-induced peaks were detected for each electrode, except the stimulating pair, where signals were clipped due to amplifier saturation. more » These peaks were phase-locked across electrodes and were 20 ms apart, thus matching the pulse train frequency. The response was characterized by calculating the median peak within the 5-second epochs. Fig. 1 shows a representative response of the right temporal grid (RTG), with the stimulation channel at RTG electrodes 14 and 15. It also shows a hypothetical amplifier saturation contour of an implantable, bi-directional, ECoG-based BCI prototype [2], assuming the supply voltage of 2.2 V and a gain of 66 dB. Finally, we quantify the worstcase scenario by calculating the largest distance between the saturation contour and the midpoint of each stimulating channel.Discussion:Our results indicate that artifact propagation follows a dipole potential distribution with the extent of the saturation region (the interior of the white contour) proportional to the stimulation amplitude. In general, the artifacts propagated farthest when a 10 mA current was applied with the saturation regions extending from 17 to 32 mm away from the midpoint of the dipole. Consistent with the electric dipole model, this maximum spread happened along the direction of the dipole moment. An exception occurred at stimulation channel RTG11-16, for which an additional saturation contour emerged away from the dipole contour (not shown), extending the saturation region to 41 mm. Also, the worst-case scenario was observed at 6 mA stimulation amplitude. This departure could be a sign of a nonlinear, switch-like behavior, wherein additional conduction pathways could become engaged in response to sufficiently high stimulation.Significance:While ECoG stimulation is routinely performed in the clinical setting, quantitative studies of the resulting signals are lacking. Our preliminary study demonstrates that stimulation artifacts largely obey dipole distributions, suggesting that the dipole model could be used to predict artifact propagation. Further studies are necessary to ascertain whether these results hold across other subjects and combinations of stimulation/recording grids. Once completed, these studies will reveal practical design constraints for future implantable bi-directional ECoG-based BCIs. These include parameters such as the distances between and relative orientations of the stimulating and recording electrodes, the choice of the stimulating electrodes, the optimal placement of the reference electrode, and the maximum stimulation amplitude. These findings would also have important implications for the design of custom, low-power bioamplifiers for implantable bi-directional ECoG-based BCIs.References:[1] Hiremath, S. V., et al. "Human perception of electrical stimulation on the surface of somatosensory cortex." PloS one 12.5 (2017): e0176020.[2] Rouse, A. G., et al. "A chronic generalized bi-directional brain-machine interface." Journal of Neural Engineering 8.3 (2011): 036018 « less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1646275
Publication Date:
NSF-PAR ID:
10108390
Journal Name:
Seventh International BCI Meeting, Abstract Book
Page Range or eLocation-ID:
220 - 222
Sponsoring Org:
National Science Foundation
More Like this
  1. Bi-directional brain-computer interfaces (BCIs) require simultaneous stimulation and recording to achieve closed-loop operation. It is therefore important that the interface be able to distinguish between neural signals of interest and stimulation artifacts. Current bi-directional BCIs address this problem by temporally multiplexing stimulation and recording. This approach, however, is suboptimal in many BCI applications. Alternative artifact mitigation methods can be devised by investigating the mechanics of artifact propagation. To characterize stimulation artifact behaviors, we collected and analyzed electrocorticography (ECoG) data from eloquent cortex mapping. Ratcheting and phase-locking of stimulation artifacts were observed, as well as dipole-like properties. Artifacts as large asmore »±1,100 μV appeared as far as 15-37 mm away from the stimulating channel when stimulating at 10 mA. Analysis also showed that the majority of the artifact power was concentrated at the stimulation pulse train frequency (50 Hz) and its super-harmonics (100, 150, 200 Hz). Lower frequencies (0-32 Hz) experienced minimal artifact contamination. These findings could inform the design of future bi-directional ECoG-based BCIs.« less
  2. Fully-implantable, bi-directional brain-computer interfaces (BCIs) necessitate simultaneous cortical recording and stimulation. This is challenging since electrostimulation of cortical tissue typically causes strong artifacts that may saturate ultra-low power (ULP) analog front-ends of fully-implantable BCIs. To address this problem, we propose an efficient hardware-based method for artifact suppression that employs an auxiliary stimulator with polarity opposite to that of the primary stimulator. The feasibility of this method was explored first in simulations, and then experimentally with brain phantom tissue and electrocorticogram (ECoG) electrode grids. We find that the canceling stimulator can reduce stimulation artifacts below the saturation limit of a typicalmore »ULP front-end, while delivering only ~10% of the primary stimulator's voltage.« less
  3. Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)
    The Neural Engineering Data Consortium has recently developed a new subset of its popular open source EEG corpus – TUH EEG (TUEG) [1]. The TUEG Corpus is the world’s largest open source corpus of EEG data and currently has over 3,300 subscribers. There are several valuable subsets of this data, including the TUH Seizure Detection Corpus (TUSZ) [2], which was featured in the Neureka 2020 Epilepsy Challenge [3]. In this poster, we present a new subset of the TUEG Corpus – the TU Artifact Corpus. This corpus contains 310 EEG files in which every artifact has been annotated. This datamore »can be used to evaluate artifact reduction technology. Since TUEG is comprised of actual clinical data, the set of artifacts appearing in the data is rich and challenging. EEG artifacts are defined as waveforms that are not of cerebral origin and may be affected by numerous external and or physiological factors. These extraneous signals are often mistaken for seizures due to their morphological similarity in amplitude and frequency [4]. Artifacts often lead to raised false alarm rates in machine learning systems, which poses a major challenge for machine learning research. Most state-of-the-art systems use some form of artifact reduction technology to suppress these events. The corpus was annotated using a five-way classification that was developed to meet the needs of our constituents. Brief descriptions of each form of the artifact are provided in Ochal et al. [4]. The five basic tags are: • Chewing (CHEW): An artifact resulting from the tensing and relaxing of the jaw muscles. Chewing is a subset of the muscle artifact class. Chewing has the same characteristic high frequency sharp waves with 0.5 sec baseline periods between bursts. This artifact is generally diffuse throughout the different regions of the brain. However, it might have a higher level of activity in one hemisphere. Classification of a muscle artifact as chewing often depends on whether the accompanying patient report mentions any chewing, since other muscle artifacts can appear superficially similar to chewing artifact. • Electrode (ELEC): An electrode artifact encompasses various electrode related artifacts. Electrode pop is an artifact characterized by channels using the same electrode “spiking” with an electrographic phase reversal. Electrostatic is an artifact caused by movement or interference of electrodes and or the presence of dissimilar metals. A lead artifact is caused by the movement of electrodes from the patient’s head and or poor connection of electrodes. This results in disorganized and high amplitude slow waves. • Eye Movement (EYEM): A spike-like waveform created during patient eye movement. This artifact is usually found on all of the frontal polar electrodes with occasional echoing on the frontal electrodes. • Muscle (MUSC): A common artifact with high frequency, sharp waves corresponding to patient movement. These waveforms tend to have a frequency above 30 Hz with no specific pattern, often occurring because of agitation in the patient. • Shiver (SHIV): A specific and sustained sharp wave artifact that occurs when a patient shivers, usually seen on all or most channels. Shivering is a relatively rare subset of the muscle artifact class. Since these artifacts can overlap in time, a concatenated label format was implemented as a compromise between the limitations of our annotation tool and the complexity needed in an annotation data structure used to represent these overlapping events. We distribute an XML format that easily handles overlapping events. Our annotation tool [5], like most annotation tools of this type, is limited to displaying and manipulating a flat or linear annotation. Therefore, we encode overlapping events as a series of concatenated names using symbols such as: • EYEM+CHEW: eye movement and chewing • EYEM+SHIV: eye movement and shivering • CHEW+SHIV: chewing and shivering An example of an overlapping annotation is shown below in Figure 1. This release is an update of TUAR v1.0.0, which was a partially annotated database. In v1.0.0, a similar five way system was used as well as an additional “null” tag. The “null” tag covers anything that was not annotated, including instances of artifact. Only a limited number of artifacts were annotated in v1.0.0. In this updated version, every instance of an artifact is annotated; ultimately, this provides the user with confidence that any part of the record that is not annotated with one of the five classes does not contain an artifact. No new files, patients, or sessions were added in v2.0.0. However, the data was reannotated with these standards. The total number of files remains the same, but the number of artifact events increases significantly. Complete statistics will be provided on the corpus once annotation is complete and the data is released. This is expected to occur in early July – just after the IEEE SPMB submission deadline. The TUAR Corpus is an open-source database that is currently available for use by any registered member of our consortium. To register and receive access, please follow the instructions provided at this web page: https://www.isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml. The data is located here: https://www.isip.piconepress.com/projects/tuh_eeg/downloads/tuh_eeg_artifact/v2.0.0/.« less
  4. Abstract Objective. To understand neural circuit dynamics, it is critical to manipulate and record many individual neurons. Traditional recording methods, such as glass microelectrodes, can only control a small number of neurons. More recently, devices with high electrode density have been developed, but few of them can be used for intracellular recording or stimulation in intact nervous systems. Carbon fiber electrodes (CFEs) are 8 µ m-diameter electrodes that can be assembled into dense arrays (pitches ⩾ 80 µ m). They have good signal-to-noise ratios (SNRs) and provide stable extracellular recordings both acutely and chronically in neural tissue in vivo (e.g.more »rat motor cortex). The small fiber size suggests that arrays could be used for intracellular stimulation. Approach. We tested CFEs for intracellular stimulation using the large identified and electrically compact neurons of the marine mollusk Aplysia californica . Neuron cell bodies in Aplysia range from 30 µ m to over 250 µ m. We compared the efficacy of CFEs to glass microelectrodes by impaling the same neuron’s cell body with both electrodes and connecting them to a DC coupled amplifier. Main results. We observed that intracellular waveforms were essentially identical, but the amplitude and SNR in the CFE were lower than in the glass microelectrode. CFE arrays could record from 3 to 8 neurons simultaneously for many hours, and many of these recordings were intracellular, as shown by simultaneous glass microelectrode recordings. CFEs coated with platinum-iridium could stimulate and had stable impedances over many hours. CFEs not within neurons could record local extracellular activity. Despite the lower SNR, the CFEs could record synaptic potentials. CFEs were less sensitive to mechanical perturbations than glass microelectrodes. Significance. The ability to do stable multi-channel recording while stimulating and recording intracellularly make CFEs a powerful new technology for studying neural circuit dynamics.« less
  5. Introduction: Back pain is one of the most common causes of pain in the United States. Spinal cord stimulation (SCS) is an intervention for patients with chronic back pain (CBP). However, SCS decreases pain in only 58% of patients and relies on self-reported pain scores as outcome measures. An SCS trial is temporarily implanted for seven days and helps to determine if a permanent SCS is needed. Patients that have a >50% reduction in pain from the trial stimulator makes them eligible for permanent implantation. However, self-reported measures reveal little on how mechanisms in the brain are altered. Other measurementsmore »of pain intensity, onset, medication, disabilities, depression, and anxiety have been used with machine learning to predict outcomes with accuracies <70%. We aim to predict long-term SCS responders at 6-months using baseline resting EEG and machine learning. Materials and Methods: We obtained 10-minutes of resting electroencephalography (EEG) and pain questionnaires from nine participants with CBP at two time points: 1) pre-trial baseline. 2) Six months after SCS permanent implant surgery. Subjects were designated as high or moderate responders based on the amount of pain relief provided by the long-term (post six months) SCS, and pain scored on a scale of 0-10 with 0 being no pain and 10 intolerable. We used the resting EEG from baseline to predict long-term treatment outcome. Resting EEG data was fed through a pipeline for classification and to map dipole sources. EEG signals were preprocessed using the EEGLAB toolbox. Independent component analysis and dipole fitting were used to linearly unmix the signal and to map dipole sources from the brain. Spectral analysis was performed to obtain the frequency distribution of the signal. Each power band, delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz), as well as the entire spectrum (1-100 Hz), were used for classification. Furthermore, dipole sources were ranked based on classification feature weights to determine the significance of specific regions in the brain. We used support vector machines to predict pain outcomes. Results and Discussion: We found higher frequency powerbands provide overall classification performance of 88.89%. Differences in power are seen between moderate and high responders in both the frontal and parietal regions for theta, alpha, beta, and the entire spectrum (Fig.1). This can potentially be used to predict patient response to SCS. Conclusions: We found evidence of decreased power in theta, alpha, beta, and entire spectrum in the anterior regions of the parietal cortex and posterior regions of the frontal cortex between moderate and high responders, which can be used for predicting treatment outcomes in long-term pain relief from SCS. Long-term treatment outcome prediction using baseline EEG data has the potential to contribute to decision making in terms of permanent surgery, forgo trial periods, and improve clinical efficiency by beginning to understand the mechanism of action of SCS in the human brain.« less