skip to main content


Title: Hindcasting Magma Reservoir Stability Preceding the 2008 Eruption of Okmok, Alaska
Abstract

Volcanic eruptions pose a significant and sometimes unpredictable hazard, especially at systems that display little to no precursory signals. For example, the 2008 eruption of Okmok volcano in Alaska notably lacked observable short‐term precursors despite years of low‐level unrest. This unpredictability highlights that direct monitoring alone is not always enough to reliably forecast eruptions. In this study, we use the Ensemble Kalman Filter (EnKF) to produce a successful hindcast of the Okmok magma system in the lead up to its 2008 eruption. By assimilating geodetic observations of ground deformation, finite element models track the evolving stress state of the magma system and evaluate its stability using mechanical failure criteria. The hindcast successfully indicates an increased eruption likelihood due to tensile failure weeks in advance of the 2008 eruption. The effectiveness of this hindcast illustrates that EnKF‐based forecasting methods may provide critical information on eruption probability in systems lacking obvious precursors.

 
more » « less
Award ID(s):
1752477
NSF-PAR ID:
10375269
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
15
ISSN:
0094-8276
Page Range / eLocation ID:
p. 8801-8808
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ensemble based data assimilation approaches, such as the Ensemble Kalman Filter (EnKF), have been widely and successfully implemented to combine observations with dynamic forecast models. In this study the EnKF is adapted to assimilate ground deformation observations from interferometric synthetic-aperture radar (InSAR) and GPS into thermomechanical finite element models (FEM) to evaluate volcanic unrest. Two eruption hindcasts are investigated: the 2008 eruption of Okmok volcano, Alaska and the 2018 eruption of Sierra Negra volcano, Galápagos, Ecuador. At Okmok, EnKF forecasts tensile failure and the lateral movement of the magma from a central pressure source in the lead up to its 2008 eruption indicating potential for diking. Alternatively, at Sierra Negra, the EnKF forecasts significant shear failure coincident with a Mw 5.4 earthquake that preceded the 2018 eruption. These successful hindcasts highlight the flexibility and potential of the volcano EnKF approach for near real time monitoring and hazard assessment at active volcanoes worldwide. 
    more » « less
  2. Abstract

    Conceptual models of magma storage and transport under calderas favor a connected system of sills and dikes. These features are individually below the resolution of standard seismic tomography, but radial seismic anisotropy can reveal where they exist in aggregate. We model radial anisotropy at Okmok caldera, Alaska, to demonstrate the presence of a caldera‐centered stacked sill complex and surrounding dike system. We show that ascending magma, inferred from seismicity, either intersects the sill complex, resulting in a larger volume eruption of evolved magma, or bypasses the overlying sill complex via dikes, resulting in a low‐volume mafic eruption. Our results exemplify how the locations of magma storage and paths of transport impact eruption size and composition. As this type of crustal storage is likely common to many calderas, this analysis offers a potential new framework for volcano observatories to forecast the size of impending eruptions.

     
    more » « less
  3. Abstract

    Seismicity during explosive volcanic eruptions remains challenging to observe through the eruptive noise, leaving first‐order questions unanswered. How do earthquake rates change as eruptions progress, and what is their relationship to the opening and closing of the eruptive vent? To address these questions for the Okmok Volcano 2008 explosive eruption, Volcano Explosivity Index 4, we utilized modern detection methods to enhance the existing earthquake catalog. Our enhanced catalog detected significantly more earthquakes than traditional methods. We located, relocated, determined magnitudes and classified all events within this catalog. Our analysis reveals distinct behaviors for long‐period (LP) and volcano‐tectonic (VT) earthquakes, providing insights into the opening and closing cycle. LP earthquakes occur as bursts beneath the eruptive vent and do not coincide in time with the plumes, indicating their relationship to an eruptive process that occurs at a high pressurization state, that is, partially closed conduit. In contrast, VT earthquakes maintain a steadier rate over a broader region, do not track the caldera deflation and have a largerb‐value during the eruption than before or after. The closing sequence is marked by a burst of LPs followed by small VTs south of the volcano. The opening sequence differs as only VTs extend to depth and migrate within minutes of the eruption onset. Our high‐resolution catalog offers valuable insights, demonstrating that volcanic conduits can transition between partially closed (clogged) and open (cracked) states during an eruption. Utilizing modern earthquake processing techniques enables clearer understanding of eruptions and holds promise for studying other volcanic events.

     
    more » « less
  4. Abstract

    Classical mechanisms of volcanic eruptions mostly involve pressure buildup and magma ascent towards the surface1. Such processes produce geophysical and geochemical signals that may be detected and interpreted as eruption precursors1–3. On 22 May 2021, Mount Nyiragongo (Democratic Republic of the Congo), an open-vent volcano with a persistent lava lake perched within its summit crater, shook up this interpretation by producing an approximately six-hour-long flank eruption without apparent precursors, followed—rather than preceded—by lateral magma motion into the crust. Here we show that this reversed sequence was most likely initiated by a rupture of the edifice, producing deadly lava flows and triggering a voluminous 25-km-long dyke intrusion. The dyke propagated southwards at very shallow depth (less than 500 m) underneath the cities of Goma (Democratic Republic of the Congo) and Gisenyi (Rwanda), as well as Lake Kivu. This volcanic crisis raises new questions about the mechanisms controlling such eruptions and the possibility of facing substantially more hazardous events, such as effusions within densely urbanized areas, phreato-magmatism or a limnic eruption from the gas-rich Lake Kivu. It also more generally highlights the challenges faced with open-vent volcanoes for monitoring, early detection and risk management when a significant volume of magma is stored close to the surface.

     
    more » « less
  5. Abstract

    Conduit models of volcanic eruptions simulate magma evolution through phase transitions and material changes during ascent. We present a time‐dependent one‐dimensional model of a chamber‐conduit system to examine the temporal evolution of dome‐forming eruptions. As magma ascends, volatiles exsolve and may escape vertically through the column or laterally through the conduit walls. Magma solidifies which increases viscosity, leading to a natural transition from viscous flow at depth to frictional sliding along the conduit walls near the surface, resulting in the extrusion of a semisolid plug. The model evaluates time‐ and depth‐dependent pressure, velocity, porosity, and relative amounts of exsolved water to carbon dioxide. Transient effects arise when magma outflux from the chamber appreciably decreases pressure over the magma ascent timescale. For low magma permeability, transient effects increase porosity and velocity relative to steady‐state solutions. For high magma permeability, efficient vertical and lateral gas escape depresses porosity and velocity at later times. We use the model to predict three time series data sets from the 2004–2008 eruption of Mount St. Helens: extruded volume, ground deformation, and carbon dioxide emissions. We quantify sensitivity of model predictions to input parameters using the distance‐based generalized sensitivity analysis. Chamber volatile content, volume, and excess pressure influence the amplitude of observables, while conduit radius, frictional rate dependence and magma permeability influence temporal evolution. High magma permeability can cause marked departures from exponentially decaying flux and may explain the unique temporal evolution of deformation observed at the only nearby continuous GPS station in operation at the eruption onset.

     
    more » « less