skip to main content


Title: Bottom–up modeling of chromatin segregation due to epigenetic modifications
We use a chromosome-scale simulation to show that the preferential binding of heterochromatin protein 1 (HP1) to regions high in histone methylation (specifically H3K9me3) results in phase segregation and reproduces features of the observed Hi-C contact map. Specifically, we perform Monte Carlo simulations with one computational bead per nucleosome and an H3K9me3 pattern based on published ChIP-seq signals. We implement a binding model in which HP1 preferentially binds to trimethylated histone tails and then oligomerizes to bridge together nucleosomes. We observe a phase reminiscent of heterochromatin—dense and high in H3K9me3—and another reminiscent of euchromatin—less dense and lacking H3K9me3. This segregation results in a plaid contact probability map that matches the general shape and position of published Hi-C data. Analysis suggests that a roughly 20-kb segment of H3K9me3 enrichment is required to drive segregation into the heterochromatic phase.  more » « less
Award ID(s):
1707751
NSF-PAR ID:
10108764
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
50
ISSN:
0027-8424
Page Range / eLocation ID:
12739 to 12744
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kaplan, C D (Ed.)
    Abstract Drosophila Heterochromatin Protein 1a (HP1a) is essential for heterochromatin formation and is involved in transcriptional silencing. However, certain loci require HP1a to be transcribed. One model posits that HP1a acts as a transcriptional silencer within euchromatin while acting as an activator within heterochromatin. However, HP1a has been observed as an activator of a set of euchromatic genes. Therefore, it is not clear whether, or how, chromatin context informs the function of HP1 proteins. To understand the role of HP1 proteins in transcription, we examined the genome-wide binding profile of HP1a as well as two other Drosophila HP1 family members, HP1B and HP1C, to determine whether coordinated binding of these proteins is associated with specific transcriptional outcomes. We found that HP1 proteins share many of their endogenous binding targets. These genes are marked by active histone modifications and are expressed at higher levels than nontarget genes in both heterochromatin and euchromatin. In addition, HP1 binding targets displayed increased RNA polymerase pausing compared with nontarget genes. Specifically, colocalization of HP1B and HP1C was associated with the highest levels of polymerase pausing and gene expression. Analysis of HP1 null mutants suggests these proteins coordinate activity at transcription start sites to regulate transcription. Depletion of HP1B or HP1C alters expression of protein-coding genes bound by HP1 family members. Our data broaden understanding of the mechanism of transcriptional activation by HP1a and highlight the need to consider particular protein–protein interactions, rather than broader chromatin context, to predict impacts of HP1 at transcription start sites. 
    more » « less
  2. Heitman, Joseph (Ed.)
    ABSTRACT Centromeres are chromosomal regions that are crucial for chromosome segregation during mitosis and meiosis, and failed centromere formation can contribute to chromosomal anomalies. Despite this conserved function, centromeres differ significantly between and even within species. Thus far, systematic studies into the organization and evolution of fungal centromeres remain scarce. In this study, we identified the centromeres in each of the 10 species of the fungal genus Verticillium and characterized their organization and evolution. Chromatin immunoprecipitation of the centromere-specific histone CenH3 (ChIP-seq) and chromatin conformation capture (Hi-C) followed by high-throughput sequencing identified eight conserved, large (∼150-kb), AT-, and repeat-rich regional centromeres that are embedded in heterochromatin in the plant pathogen Verticillium dahliae . Using Hi-C, we similarly identified repeat-rich centromeres in the other Verticillium species. Strikingly, a single degenerated long terminal repeat (LTR) retrotransposon is strongly associated with centromeric regions in some but not all Verticillium species. Extensive chromosomal rearrangements occurred during Verticillium evolution, of which some could be linked to centromeres, suggesting that centromeres contributed to chromosomal evolution. The size and organization of centromeres differ considerably between species, and centromere size was found to correlate with the genome-wide repeat content. Overall, our study highlights the contribution of repetitive elements to the diversity and rapid evolution of centromeres within the fungal genus Verticillium . IMPORTANCE The genus Verticillium contains 10 species of plant-associated fungi, some of which are notorious pathogens. Verticillium species evolved by frequent chromosomal rearrangements that contribute to genome plasticity. Centromeres are instrumental for separation of chromosomes during mitosis and meiosis, and failed centromere functionality can lead to chromosomal anomalies. Here, we used a combination of experimental techniques to identify and characterize centromeres in each of the Verticillium species. Intriguingly, we could strongly associate a single repetitive element to the centromeres of some of the Verticillium species. The presence of this element in the centromeres coincides with increased centromere sizes and genome-wide repeat expansions. Collectively, our findings signify a role of repetitive elements in the function, organization, and rapid evolution of centromeres in a set of closely related fungal species. 
    more » « less
  3. Chemical tools to control the activities and interactions of chromatin components have broad impact on our understanding of cellular and disease processes. It is important to accurately identify their molecular effects to inform clinical efforts and interpretations of scientific studies. Chaetocin is a widely used chemical that decreases H3K9 methylation in cells. It is frequently attributed as a specific inhibitor of the histone methyltransferase activities of SUV39H1/SU(VAR)3–9, although prior observations showed chaetocin likely inhibits methyltransferase activity through covalent mechanisms involving its epipolythiodixopiperazine disulfide ‘warhead’ functionality. The continued use of chaetocin in scientific studies may derive from the net effect of reduced H3K9 methylation, irrespective of a direct or indirect mechanism. However, there may be other molecular impacts of chaetocin on SUV39H1 besides inhibition of H3K9 methylation levels that could confound the interpretation of past and future experimental studies. Here, we test a new hypothesis that chaetocin may have an additional downstream impact aside from inhibition of methyltransferase activity. Using a combination of truncation mutants, a yeast two-hybrid system, and direct in vitro binding assays, we show that the human SUV39H1 chromodomain (CD) and HP1 chromoshadow domain (CSD) directly interact. Chaetocin inhibits this binding interaction through its disulfide functionality with some specificity by covalently binding with the CD of SUV39H1, whereas the histone H3–HP1 interaction is not inhibited. Given the key role of HP1 dimers in driving a feedback cascade to recruit SUV39H1 and to establish and stabilize constitutive heterochromatin, this additional molecular consequence of chaetocin should be broadly considered. 
    more » « less
  4. If a transgene is effectively delivered to a cell, its expression may still be limited by epigenetic mechanisms that silence the transgene. Indeed, once the transgene reaches the nucleus, it may be bound by histone proteins and condensed into heterochromatin or associated with repressor proteins that block transcription. In this study, we sought to enhance transgene expression by adding binding motifs for several different epigenetic enzymes either upstream or downstream of two promoters (CMV and EF1α). Screening these plasmids revealed that luciferase expression was enhanced 10‐fold (10.4 ± 5.8) by the addition of a CCAAT box just upstream of the EF1α promoter to recruit nuclear transcription factor Y (NF‐Y), while inserting a CCCTC‐binding factor (CTCF) motif downstream of the EF1α promoter enhanced expression at least 14‐fold (14.03 ± 6.54). ChIP assays confirmed that NF‐Y and CTCF bound to the motifs that were added to each plasmid, but the presence of NF‐Y and CTCF did not significantly affect the levels of histone acetylation (H3K9ac) or methylation (H3K9me3). Overall, these results show that transgene expression from the EF1α promoter can be significantly increased with motifs that recruit NF‐Y or CTCF. © 2018 American Institute of Chemical EngineersBiotechnol. Prog., 34:1581–1588, 2018

     
    more » « less
  5. Freitag, M (Ed.)
    Abstract Heterochromatin, a transcriptionally silenced chromatin domain, is important for genome stability and gene expression. Histone 3 lysine 9 methylation (H3K9me) and histone hypoacetylation are conserved epigenetic hallmarks of heterochromatin. In fission yeast, RNA interference (RNAi) plays a key role in H3K9 methylation and heterochromatin silencing. However, how RNAi machinery and histone deacetylases (HDACs) are coordinated to ensure proper heterochromatin assembly is still unclear. Previously, we showed that Dpb4, a conserved DNA polymerase epsilon subunit, plays a key role in the recruitment of HDACs to heterochromatin during S phase. Here, we identified a novel RNA-binding protein Dri1 that interacts with Dpb4. GFP-tagged Dri1 forms distinct foci mostly in the nucleus, showing a high degree of colocalization with Swi6/Heterochromatin Protein 1. Deletion of dri1+ leads to defects in silencing, H3K9me, and heterochromatic siRNA generation. We also showed that Dri1 physically associates with heterochromatic transcripts, and is required for the recruitment of the RNA-induced transcriptional silencing (RITS) complex via interacting with the complex. Furthermore, loss of Dri1 decreases the association of the Sir2 HDAC with heterochromatin. We further demonstrated that the C-terminus of Dri1 that includes an intrinsically disordered (IDR) region and three zinc fingers is crucial for its role in silencing. Together, our evidences suggest that Dri1 facilitates heterochromatin assembly via the RNAi pathway and HDAC. 
    more » « less