skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-context System for Optimization Problems
This paper proposes Multi-context System for Optimiza- tion Problems (MCS-OP) by introducing conditional cost- assignment bridge rules to Multi-context Systems (MCS). This novel feature facilitates the definition of a preorder among equilibria, based on the total incurred cost of ap- plied bridge rules. As an application of MCS-OP, the pa- per describes how MCS-OP can be used in modeling Dis- tributed Constraint Optimization Problems (DCOP), a promi- nent class of distributed optimization problems that is fre- quently employed in multi-agent system (MAS) research. The paper shows, by means of an example, that MCS-OP is more expressive than DCOP, and hence, could potentially be useful in modeling distributed optimization problems which cannot be easily dealt with using DCOPs. It also contains a complexity analysis of MCS-OP.  more » « less
Award ID(s):
1812628
PAR ID:
10108805
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ... AAAI Conference on Artificial Intelligence
ISSN:
2159-5399
Page Range / eLocation ID:
2929-2937
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes Multi-context System for Optimiza- tion Problems (MCS-OP) by introducing conditional cost- assignment bridge rules to Multi-context Systems (MCS). This novel feature facilitates the definition of a preorder among equilibria, based on the total incurred cost of ap- plied bridge rules. As an application of MCS-OP, the pa- per describes how MCS-OP can be used in modeling Dis- tributed Constraint Optimization Problems (DCOP), a promi- nent class of distributed optimization problems that is fre- quently employed in multi-agent system (MAS) research. The paper shows, by means of an example, that MCS-OP is more expressive than DCOP, and hence, could potentially be useful in modeling distributed optimization problems which cannot be easily dealt with using DCOPs. It also contains a complexity analysis of MCS-OP. 
    more » « less
  2. The Distributed Constraint Optimization Problem (DCOP) formulation is a powerful tool for modeling multi-agent coordination problems. To solve DCOPs in a dynamic environment, Dynamic DCOPs (D-DCOPs) have been proposed to model the inherent dynamism present in many coordination problems. D-DCOPs solve a sequence of static problems by reacting to changes in the environment as the agents observe them. Such reactive approaches ignore knowledge about future changes of the problem. To overcome this limitation, we introduce Proactive Dynamic DCOPs (PD-DCOPs), a novel formalism to model D-DCOPs in the presence of exogenous uncertainty. In contrast to reactive approaches, PD-DCOPs are able to explicitly model possible changes of the problem and take such information into account when solving the dynamically changing problem in a proactive manner. The additional expressivity of this formalism allows it to model a wider variety of distributed optimization problems. Our work presents both theoretical and practical contributions that advance current dynamic DCOP models: (i) We introduce Proactive Dynamic DCOPs (PD-DCOPs), which explicitly model how the DCOP will change over time; (ii) We develop exact and heuristic algorithms to solve PD-DCOPs in a proactive manner; (iii) We provide theoretical results about the complexity of this new class of DCOPs; and (iv) We empirically evaluate both proactive and reactive algorithms to determine the trade-offs between the two classes. The final contribution is important as our results are the first that identify the characteristics of the problems that the two classes of algorithms excel in. 
    more » « less
  3. Smart City is a key component in Internet of Things (IoTs), so it has attracted much attention. The emergence of Mobile Crowd Sensing (MCS) systems enables many smart city applications. In an MCS system, sensing tasks are allocated to a number of mobile users. As a result, the sensing related context of each mobile user plays a significant role on service quality. However, some important sensing context is ignored in the literature. This motivates us to propose a Context-aware Multi-Armed Bandit (C-MAB) incentive mechanism to facilitate quality-based worker selection in an MCS system. We evaluate a worker’s service quality by its context (i.e., extrinsic ability and intrinsic ability) and cost. Based on our proposed C-MAB incentive mechanism and quality evaluation design, we develop a Modified Thompson Sampling Worker Selection (MTS-WS) algorithm to select workers in a reinforcement learning manner. MTS-WS is able to choose effective workers because it can maintain accurate worker quality information by updating evaluation parameters according to the status of task accomplishment. We theoretically prove that our C-MAB incentive mechanism is selection efficient, computationally efficient, individually rational, and truthful. Finally, we evaluate our MTS-WS algorithm on simulated and real-world datasets in comparison with some other classic algorithms. Our evaluation results demonstrate that MTS-WS achieves the highest cumulative utility of the requester and social welfare. 
    more » « less
  4. Over the last two decades, robust optimization has emerged as a popular means to address decision-making problems affected by uncertainty. This includes single-stage and multi-stage problems involving real-valued and/or binary decisions and affected by exogenous (decision-independent) and/or endogenous (decision-dependent) uncertain parameters. Robust optimization techniques rely on duality theory potentially augmented with approximations to transform a (semi-)infinite optimization problem to a finite program, the robust counterpart. Whereas writing down the model for a robust optimization problem is usually a simple task, obtaining the robust counterpart requires expertise. To date, very few solutions are available that can facilitate the modeling and solution of such problems. This has been a major impediment to their being put to practical use. In this paper, we propose ROC++, an open-source C++ based platform for automatic robust optimization, applicable to a wide array of single-stage and multi-stage robust problems with both exogenous and endogenous uncertain parameters, that is easy to both use and extend. It also applies to certain classes of stochastic programs involving continuously distributed uncertain parameters and endogenous uncertainty. Our platform naturally extends existing off-the-shelf deterministic optimization platforms and offers ROPy, a Python interface in the form of a callable library, and the ROB file format for storing and sharing robust problems. We showcase the modeling power of ROC++ on several decision-making problems of practical interest. Our platform can help streamline the modeling and solution of stochastic and robust optimization problems for both researchers and practitioners. It comes with detailed documentation to facilitate its use and expansion. The latest version of ROC++ can be downloaded from https://sites.google.com/usc.edu/robust-opt-cpp/ . Summary of Contribution: The paper “ROC++: Robust Optimization in C++” proposes a new open-source C++ based platform for modeling, automatically reformulating, and solving robust optimization problems. ROC++ can address both single-stage and multi-stage problems involving exogenous and/or endogenous uncertain parameters and real- and/or binary-valued adaptive variables. The ROC++ modeling language is similar to the one provided for the deterministic case by state-of-the-art deterministic optimization solvers. ROC++ comes with detailed documentation to facilitate its use and expansion. It also offers ROPy, a Python interface in the form of a callable library. The latest version of ROC++ can be downloaded from https://sites.google.com/usc.edu/robust-opt-cpp/ . History: Accepted by Ted Ralphs, Area Editor for Software Tools. Funding: This material is based upon work supported by the National Science Foundation under Grant No. 1763108. This support is gratefully acknowledged. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplementary Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.1209 ) or is available from the IJOC GitHub software repository ( https://github.com/INFORMSJoC ) at ( https://dx.doi.org/10.5281/zenodo.6360996 ). 
    more » « less
  5. Manufactured parts are meticulously engineered to perform well with respect to several conflicting metrics, like weight, stress, and cost. The best achievable trade-offs reside on the Pareto front , which can be discovered via performance-driven optimization. The objectives that define this Pareto front often incorporate assumptions about the context in which a part will be used, including loading conditions, environmental influences, material properties, or regions that must be preserved to interface with a surrounding assembly. Existing multi-objective optimization tools are only equipped to study one context at a time, so engineers must run independent optimizations for each context of interest. However, engineered parts frequently appear in many contexts: wind turbines must perform well in many wind speeds, and a bracket might be optimized several times with its bolt-holes fixed in different locations on each run. In this paper, we formulate a framework for variable-context multi-objective optimization. We introduce the Pareto gamut , which captures Pareto fronts over a range of contexts. We develop a global/local optimization algorithm to discover the Pareto gamut directly, rather than discovering a single fixed-context "slice" at a time. To validate our method, we adapt existing multi-objective optimization benchmarks to contextual scenarios. We also demonstrate the practical utility of Pareto gamut exploration for several engineering design problems. 
    more » « less