skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Ligand Protonation Series in Aluminum(III) Complexes of Tridentate Bis(enol)amine Ligand
Award ID(s):
1763821
PAR ID:
10109048
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Organometallics
Volume:
37
Issue:
23
ISSN:
0276-7333
Page Range / eLocation ID:
4527 to 4533
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract While significant advances have been made in predicting static protein structures, the inherent dynamics of proteins, modulated by ligands, are crucial for understanding protein function and facilitating drug discovery. Traditional docking methods, frequently used in studying protein-ligand interactions, typically treat proteins as rigid. While molecular dynamics simulations can propose appropriate protein conformations, they’re computationally demanding due to rare transitions between biologically relevant equilibrium states. In this study, we present DynamicBind, a deep learning method that employs equivariant geometric diffusion networks to construct a smooth energy landscape, promoting efficient transitions between different equilibrium states. DynamicBind accurately recovers ligand-specific conformations from unbound protein structures without the need for holo-structures or extensive sampling. Remarkably, it demonstrates state-of-the-art performance in docking and virtual screening benchmarks. Our experiments reveal that DynamicBind can accommodate a wide range of large protein conformational changes and identify cryptic pockets in unseen protein targets. As a result, DynamicBind shows potential in accelerating the development of small molecules for previously undruggable targets and expanding the horizons of computational drug discovery. 
    more » « less