skip to main content

Title: In Situ Conformational Changes of the Escherichia coli Serine Chemoreceptor in Different Signaling States
ABSTRACT Tsr, the serine chemoreceptor in Escherichia coli , transduces signals from a periplasmic ligand-binding site to its cytoplasmic tip, where it controls the activity of the CheA kinase. To function, Tsr forms trimers of homodimers (TODs), which associate in vivo with the CheA kinase and CheW coupling protein. Together, these proteins assemble into extended hexagonal arrays. Here, we use cryo-electron tomography and molecular dynamics simulation to study Tsr in the context of a near-native array, characterizing its signaling-related conformational changes at both the individual dimer and the trimer level. In particular, we show that individual Tsr dimers within a trimer exhibit asymmetric flexibilities that are a function of the signaling state, highlighting the effect of their different protein interactions at the receptor tips. We further reveal that the dimer compactness of the Tsr trimer changes between signaling states, transitioning at the glycine hinge from a compact conformation in the kinase-OFF state to an expanded conformation in the kinase-ON state. Hence, our results support a crucial role for the glycine hinge: to allow the receptor flexibility necessary to achieve different signaling states while also maintaining structural constraints imposed by the membrane and extended array architecture. IMPORTANCE In Escherichia coli , more » membrane-bound chemoreceptors, the histidine kinase CheA, and coupling protein CheW form highly ordered chemosensory arrays. In core signaling complexes, chemoreceptor trimers of dimers undergo conformational changes, induced by ligand binding and sensory adaptation, which regulate kinase activation. Here, we characterize by cryo-electron tomography the kinase-ON and kinase-OFF conformations of the E. coli serine receptor in its native array context. We found distinctive structural differences between the members of a receptor trimer, which contact different partners in the signaling unit, and structural differences between the ON and OFF signaling complexes. Our results provide new insights into the signaling mechanism of chemoreceptor arrays and suggest an important functional role for a previously postulated flexible region and glycine hinge in the receptor molecule. « less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1713784
Publication Date:
NSF-PAR ID:
10109349
Journal Name:
mBio
Volume:
10
Issue:
4
ISSN:
2150-7511
Sponsoring Org:
National Science Foundation
More Like this
  1. Chemotaxis systems enable microbes to sense their immediate environment, moving towards beneficial stimuli and away from those that are harmful. In an effort to better understand the chemotaxis system of Sinorhizobium meliloti , a symbiont of the legume alfalfa, the cellular stoichiometries of all ten chemotaxis proteins in S. meliloti were determined. A combination of quantitative immunoblot and mass spectrometry revealed that the protein stoichiometries in S. meliloti varied greatly from those in Escherichia coli and Bacillus subtilis . To compare protein ratios to other systems, values were normalized to the central kinase CheA. All S. meliloti chemotaxis proteins exhibited increased ratios to varying degrees. The ten-fold higher molar ratio of adaptor proteins CheW1 and CheW2 to CheA might result in the formation of rings in the chemotaxis array that only consist of CheW instead of CheA and CheW in a 1:1 ratio. We hypothesize that the higher ratio of CheA to the main response regulator CheY2 is a consequence of the speed-variable motor in S. meliloti , instead of a switch-type motor. Similarly, proteins involved in signal termination are far more abundant in S. meliloti , which utilizes a phosphate-sink mechanism based on CheA retro-phosphorylation to inactivate the motormore »response regulator versus CheZ-catalyzed dephosphorylation as in E. coli and B. subtilis . Finally, the abundance of CheB and CheR, which regulate chemoreceptor methylation, was increased when compared to CheA, indicative of variations in the adaptation system of S. meliloti . Collectively, these results mark significant differences in the composition of bacterial chemotaxis systems. IMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti contributes greatly to host-plant growth by fixing atmospheric nitrogen. The provision of nitrogen as ammonium by S. meliloti leads to increased biomass production of its legume host alfalfa and diminishes the use of environmentally harmful chemical fertilizers. To better understand the role of chemotaxis in host-microbe interaction, a comprehensive catalogue of the bacterial chemotaxis system is vital, including its composition, function, and regulation. The stoichiometry of chemotaxis proteins in S. meliloti has very few similarities to the systems in E. coli and B. subtilis . In addition, total amounts of proteins are significantly lower. S. meliloti exhibits a chemotaxis system distinct from known models by incorporating new proteins as exemplified by the phosphate sink mechanism.« less
  2. ABSTRACT Most chemotactic motile bacteria possess multiple chemotaxis signaling systems, the functions of which are not well characterized. Chemotaxis signaling is initiated by chemoreceptors that assemble as large arrays, together with chemotaxis coupling proteins (CheW) and histidine kinase proteins (CheA), which form a baseplate with the cytoplasmic tips of receptors. These cell pole-localized arrays mediate sensing, signaling, and signal amplification during chemotaxis responses. Membrane-bound chemoreceptors with different cytoplasmic domain lengths segregate into distinct arrays. Here, we show that a bacterium, Azospirillum brasilense , which utilizes two chemotaxis signaling systems controlling distinct motility parameters, coordinates its chemotactic responses through the production of two separate membrane-bound chemoreceptor arrays by mixing paralogs within chemotaxis baseplates. The polar localization of chemoreceptors of different length classes is maintained in strains that had baseplate signaling proteins from either chemotaxis system but was lost when both systems were deleted. Chemotaxis proteins (CheA and CheW) from each of the chemotaxis signaling systems (Che1 and Che4) could physically interact with one another, and chemoreceptors from both classes present in A. brasilense could interact with Che1 and Che4 proteins. The assembly of paralogs from distinct chemotaxis pathways into baseplates provides a straightforward mechanism for coordinating signaling from distinct pathways, whichmore »we predict is not unique to this system given the propensity of chemotaxis systems for horizontal gene transfer. IMPORTANCE The assembly of chemotaxis receptors and signaling proteins into polar arrays is universal in motile chemotactic bacteria. Comparative genome analyses indicate that most motile bacteria possess multiple chemotaxis signaling systems, and experimental evidence suggests that signaling from distinct chemotaxis systems is integrated. Here, we identify one such mechanism. We show that paralogs from two chemotaxis systems assemble together into chemoreceptor arrays, forming baseplates comprised of proteins from both chemotaxis systems. These mixed arrays provide a straightforward mechanism for signal integration and coordinated response output from distinct chemotaxis systems. Given that most chemotactic bacteria encode multiple chemotaxis systems and the propensity for these systems to be laterally transferred, this mechanism may be common to ensure chemotaxis signal integration occurs.« less
  3. BY-kinases constitute a protein tyrosine kinase family that encodes unique catalytic domains that deviate from those of eukaryotic kinases resembling P-loop nucleotide triphosphatases (NTPases) instead. We have used computational and supporting biochemical approaches using the catalytic domain of the Escherichia coli BY-kinase, Wzc, to illustrate mechanistic divergences between BY-kinases and NTPases despite their deployment of similar catalytic motifs. In NTPases, the “arginine finger” drives the reactive conformation of ATP while also displacing its solvation shell, thereby making favorable enthalpic and entropic contributions toward βγ-bond cleavage. In BY-kinases, the reactive state of ATP is enabled by ATP·Mg 2+ -induced global conformational transitions coupled to the conformation of the Walker-A lysine. While the BY-kinase arginine finger does promote the desolvation of ATP, it does so indirectly by generating an ordered active site in combination with other structural elements. Bacteria, using these mechanistic variations, have thus repurposed an ancient fold to phosphorylate on tyrosine.
  4. ABSTRACT Soil bacteria adapt to diverse and rapidly changing environmental conditions by sensing and responding to environmental cues using a variety of sensory systems. Two-component systems are a widespread type of signal transduction system present in all three domains of life and typically are comprised of a sensor kinase and a response regulator. Many two-component systems function by regulating gene expression in response to environmental stimuli. The bacterial chemotaxis system is a modified two-component system with additional protein components and a response that, rather than regulating gene expression, involves behavioral adaptation and results in net movement toward or away from a chemical stimulus. Soil bacteria generally have 20 to 40 or more chemoreceptors encoded in their genomes. To simplify the identification of chemoeffectors (ligands) sensed by bacterial chemoreceptors, we constructed hybrid sensor proteins by fusing the sensor domains of Pseudomonas putida chemoreceptors to the signaling domains of the Escherichia coli NarX/NarQ nitrate sensors. Responses to potential attractants were monitored by β-galactosidase assays using an E. coli reporter strain in which the nitrate-responsive narG promoter was fused to lacZ . Hybrid receptors constructed from PcaY, McfR, and NahY, which are chemoreceptors for aromatic acids, tricarboxylic acid cycle intermediates, and naphthalene, respectively,more »were sensitive and specific for detecting known attractants, and the β-galactosidase activities measured in E. coli correlated well with results of chemotaxis assays in the native P. putida strain. In addition, a screen of the hybrid receptors successfully identified new ligands for chemoreceptor proteins and resulted in the identification of six receptors that detect propionate. IMPORTANCE Relatively few of the thousands of chemoreceptors encoded in bacterial genomes have been functionally characterized. More importantly, although methyl-accepting chemotaxis proteins, the major type of chemoreceptors present in bacteria, are easily identified bioinformatically, it is not currently possible to predict what chemicals will bind to a particular chemoreceptor. Chemotaxis is known to play roles in biodegradation as well as in host-pathogen and host-symbiont interactions, but many studies are currently limited by the inability to identify relevant chemoreceptor ligands. The use of hybrid receptors and this simple E. coli reporter system allowed rapid and sensitive screening for potential chemoeffectors. The fusion site chosen for this study resulted in a high percentage of functional hybrids, indicating that it could be used to broadly test chemoreceptor responses from phylogenetically diverse samples. Considering the wide range of chemical attractants detected by soil bacteria, hybrid receptors may also be useful as sensitive biosensors.« less
  5. Abstract

    The molecular events that permit the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to bind and enter cells are important to understand for both fundamental and therapeutic reasons. Spike proteins consist of S1 and S2 domains, which recognize angiotensin-converting enzyme 2 (ACE2) receptors and contain the viral fusion machinery, respectively. Ostensibly, the binding of spike trimers to ACE2 receptors promotes dissociation of the S1 domains and exposure of the fusion machinery, although the molecular details of this process have yet to be observed. We report the development of bottom-up coarse-grained (CG) models consistent with cryo-electron tomography data, and the use of CG molecular dynamics simulations to investigate viral binding and S2 core exposure. We show that spike trimers cooperatively bind to multiple ACE2 dimers at virion-cell interfaces in a manner distinct from binding between soluble proteins, which processively induces S1 dissociation. We also simulate possible variant behavior using perturbed CG models, and find that ACE2-induced S1 dissociation is primarily sensitive to conformational state populations and the extent of S1/S2 cleavage, rather than ACE2 binding affinity. These simulations reveal an important concerted interaction between spike trimers and ACE2 dimers that primes the virus for membrane fusion andmore »entry.

    « less