skip to main content


Title: Interactions between a Nocturnal MCS and the Stable Boundary Layer as Observed by an Airborne Compact Raman Lidar during PECAN
Abstract

Small-scale variations within the low-level outflow and inflow of an MCS can either support or deter the upscale growth and maintenance of the MCS. However, these small-scale variations, in particular in the thermodynamics (temperature and humidity), remain poorly understood, due to a lack of detailed measurements. The compact Raman lidar (CRL) deployed on the University of Wyoming King Air aircraft directly sampled temperature and water vapor profiles at unprecedented vertical and along-track resolutions along the southern margin of a series of mature nocturnal MCSs traveling along a frontal boundary on 1 July 2015 during the Plains Elevated Convection at Night (PECAN) campaign. Here, the capability of the airborne CRL to document interactions between the MCS inflow and outflow currents is illustrated. The CRL reveals the well-defined boundary of a cooler current. This is interpreted as the frontal boundary sharpened by convectively induced cold pools, in particular by the outflow boundary of the downstream MCS. In one CRL transect, the frontal/outflow boundary appeared as a distinct two-layer structure of moisture and aerosols formed by moist stable boundary layer air advected above the boundary. The second transect, one hour later, reveals a single sloping boundary. In both cases, the lofting of the moist stably stratified air over the boundary favors MCS maintenance, through enhanced elevated CAPE and reduced CIN. The CRL data are sufficiently resolved to reveal Kelvin–Helmholtz (KH) billows and the vertical structure of the outflow boundary, which in this case behaved as a density current rather than an undular bore.

 
more » « less
NSF-PAR ID:
10109382
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
147
Issue:
9
ISSN:
0027-0644
Page Range / eLocation ID:
p. 3169-3189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This observational study documents the consequences of a collision between two converging shallow atmospheric boundaries over the central Great Plains on the evening of 7 June 2015. This study uses data from a profiling airborne Raman lidar (the Compact Raman Lidar, or CRL) and other airborne and ground-based data collected during the Plains Elevated Convection At Night (PECAN) field campaign to investigate the collision between a weak cold front and the outflow from a MCS. The collision between these boundaries led to the lofting of high-CAPE, low-CIN air, resulting in deep convection, as well as an undular bore. Both boundaries behaved as density currents prior to collision. Because the MCS outflow boundary was denser and less deep than the cold-frontal airmass, the bore propagated over the latter. This bore was tracked by the CRL for about three hours as it traveled north over the shallow cold-frontal surface and evolved into a soliton. This case study is unique by using the high temporal and spatial resolution of airborne Raman lidar measurements to describe the thermodynamic structure of interacting boundaries and a resulting bore. 
    more » « less
  2. Abstract

    Bores have been shown to play a role in the initiation and maintenance of mesoscale convective systems (MCSs), particularly during the night after the boundary layer stabilizes. To date, the generation, evolution, and structure of bores over China has received little attention. This study utilizes observations and simulations with the WRF‐ARW model to investigate the generation and evolution of an atmospheric bore observed over Yangtze‐Huai Plains of China. The bore was associated with a nocturnal MCS that first formed over elevated terrain. The bore was observed ahead of the MCS with a maximum lateral extension of ~100 km. The feature lasted for over 90 mins and propagated at a speed of ~13 m/s, slightly faster than the MCS. In the simulation, the bore evolved from the separating “head” of the convectively generated gravity current. The bore then continued to propagate ahead of the MCS, even after the dissipation of the feeder current, and took on the appearance of an undular bore. The bore lifted a layer of convectively unstable air above the nocturnal surface inversion, initiating new convection ahead of the MCS to help maintain the MCS. The Scorer parameter ahead of the bore revealed a low‐level wind profile with curvature of the vertical profile of horizontal wind, favoring the trapping of wave energy and the persistence of the bore. These results are generally consistent with the role of bores in the maintenance of nocturnal MCSs and emphasize the need for future studies into the relationship between bores and nocturnal MCSs over China.

     
    more » « less
  3. Abstract The magnitude of water vapor content within the near-storm inflow can either support or deter the storm’s upscale growth and maintenance. However, the heterogeneity of the moisture field near storms remains poorly understood because the operational observation network lacks detail. This observational study illustrates that near-storm inflow water vapor environments are both significantly heterogeneous and different than the far-inflow storm environment. This study also depicts the importance of temporal variation of water vapor mixing ratio (WVMR) to instability during the peak tornadic seasons in the U.S. Southeast and Great Plains regions during the Verification of the Origins of Rotation in Tornadoes Experiment Southeast 2018 (VSE18) campaign and the Targeted Observation by Radar and UAS of Supercells (TORUS) campaign, respectively. VSE18 results suggest that the surface processes control WVMR variation significantly in lower levels, with the highest WVMR mainly located near the surface in inflows in the southeast region. In contrast, TORUS results show more vertically homogeneous WVMR profiles and rather uniform water vapor distribution variation occurring in deep, moist stratified inflows in the Great Plains region. Temporal water vapor variations within 5-min periods could lead to over 1000 J kg −1 CAPE changes in both VSE18 and TORUS, which represent significant potential buoyancy perturbations for storms to intensify or decay. These temporal water vapor and instability evolutions of moving storms remain difficult to capture via radiosondes and fixed in situ or profiling instrumentation, yet may exert a strong impact on storm evolution. This study suggests that improving observations of the variability of near-storm inflow moisture can accurately refine a potential severe weather threat. Significance Statement It has long been recognized that better observations of the planetary boundary layer (PBL) inflow near convective storms are needed to improve severe weather forecasting. The current operational networks essentially do not provide profile measurements of the PBL, except for the sparsely spaced 12-hourly sounding network. More frequent geostationary satellite observations do not provide adequately high vertical resolution in the PBL. This study uses airborne lidar profiler measurements to examine moisture in the inflow region of convective storms in the Great Plains and the southeastern United States during their respective tornadic seasons. Rapid PBL water vapor variations on a ∼5 min time scale can lead to CAPE perturbations exceeding 1000 J kg −1 , representing significant perturbations that could promote storm intensification or decay. Severe thunderstorms may generate high-impact weather phenomena, such as tornadoes, high winds, hail, and heavy rainfall, which have substantial socioeconomic impacts. Ultimately, by contrasting characteristics of the convective storm inflow in the two regions, this study may lead to a more accurate assessment of severe weather threats. 
    more » « less
  4. null (Ed.)
    Abstract In a mesoscale convective system (MCS), convection that redevelops over (i.e., back-builds), and/or repeatedly passes over (i.e., trains) a region for an extended period of time can contribute to extreme rainfall and flash flooding. Past studies have indicated that both mesoscale ascent and lifting of the inflow layer by a cold pool or bore are important when this back-building/training convection is displaced from the leading line [sometimes called rearward off-boundary development (ROD)]. However, Plains Elevated Convection At Night (PECAN) field campaign observations suggest that the stability of the nocturnal boundary layer is highly variable and some MCSs with ROD have only a weak surface cold pool. Numerical simulations presented in this study suggest that in an environment with strong boundary layer stability, ROD can be supported by mechanisms other than those mentioned above. Simulations were initialized using a sounding from ahead of a PECAN MCS with a strong stable layer and ROD, and the three-dimensional simulation produced an MCS similar to that observed despite the homogeneous initial conditions. Some of the findings presented herein challenge existing understanding of nocturnal MCSs, and especially how downdrafts interact with a stable boundary layer. Notably, downdrafts can reach the surface, and different regions of the MCS may have different propagation mechanisms and different relevant inflow layers. Unlike previous studies of ROD, parcel lifting may be supported by an intrusion (an elevated layer of downdraft air) modified by the three-dimensional vertical wind shear. 
    more » « less
  5. null (Ed.)
    The Antarctic Circumpolar Current (ACC) is the world’s strongest zonal current system that connects all three major ocean basins of the global ocean and therefore integrates and responds to global climate variability. Its flow is largely driven by strong westerly winds and constricted to its narrowest extent in the Drake Passage. Transport of fresh and cold surface and intermediate water masses through the Drake Passage (cold-water route) strongly affects the Atlantic Meridional Overturning Circulation together with the inflow of Indian Ocean water masses (warm-water route). Both oceanographic corridors are critical for the South Atlantic contribution to Meridional Overturning Circulation changes. In contrast to the Atlantic and Indian sectors of the ACC, and with the exception of drill cores from the Antarctic continental margin and off New Zealand, the Pacific sector of the ACC lacks information on its Cenozoic paleoceanography from deep-sea drilling records. To advance our knowledge and understanding of Miocene to Holocene atmosphere-ocean-cryosphere dynamics in the Pacific and their implications for regional and global climate and atmospheric CO2, International Ocean Discovery Program (IODP) Expedition 383 recovered sedimentary sequences at (1) three sites located in the central South Pacific (U1539, U1540, and U1541), (2) two sites at the Chile margin (U1542 and U1544), and (3) one site from the pelagic eastern South Pacific (U1543) close to the entrance to the Drake Passage. Because of persistently stormy conditions and the resulting bad weather avoidance, we were not successful in recovering the originally planned Proposed Site CSP-3A in the central South Pacific in the Polar Frontal Zone. The drilled sediments at Sites U1541 and U1543 reach back to the late Miocene, and those at Site U1540 reach back to the early Pliocene. High sedimentary rate Pleistocene sedimentary sequences were drilled both in the central South Pacific (Site U1539) and along the Chile margin. Taken together, the sites represent a depth transect from ~1100 m at the Chile margin site (U1542) to ~4070 m in the central South Pacific (Site U1539) and allow investigation of changes in the vertical structure of the ACC, a key issue for understanding the role of the Southern Ocean in the global carbon cycle. The sites are located at latitudes and water depths where sediments will allow the application of a wide range of siliciclastic-, carbonate-, and opal-based proxies to address our objectives of reconstructing with unprecedented stratigraphic detail surface to deep-ocean variations and their relation to atmosphere and cryosphere changes through stadial to interstadial, glacial to interglacial, and warmer than present time intervals. 
    more » « less