skip to main content


Title: Evolution of sex ratio through gene loss
The maintenance of males at intermediate frequencies is an important evolutionary problem. Several species of Caenorhabditis nematodes have evolved a mating system in which selfing hermaphrodites and males coexist. While selfing produces XX hermaphrodites, cross-fertilization produces 50% XO male progeny. Thus, male mating success dictates the sex ratio. Here, we focus on the contribution of the male secreted short (mss) gene family to male mating success, sex ratio, and population growth. The mss family is essential for sperm competitiveness in gonochoristic species, but has been lost in parallel in androdioecious species. Using a transgene to restore mss function to the androdioecious Caenorhabditis briggsae, we examined how mating system and population subdivision influence the fitness of the mss+ genotype. Consistent with theoretical expectations, when mss+ and mss-null (i.e., wild type) genotypes compete, mss+ is positively selected in both mixed-mating and strictly outcrossing situations, though more strongly in the latter. Thus, while sexual mode alone affects the fitness of mss+, it is insufficient to explain its parallel loss. However, in genetically homogenous androdioecious populations, mss+ both increases male frequency and depresses population growth. We propose that the lack of inbreeding depression and the strong subdivision that characterize natural Caenorhabditis populations impose selection on sex ratio that makes loss of mss adaptive after self-fertility evolves.  more » « less
Award ID(s):
1755379
NSF-PAR ID:
10109702
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Volume:
116
Issue:
26
ISSN:
1091-6490
Page Range / eLocation ID:
12919–12924
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We provide a partial test of the mitonuclear sex hypothesis with the first controlled study of how male frequencies and rates of outcrossing evolve in response to mitonuclear mismatch by allowing replicate lineages of C. elegans nematodes containing either mitochondrial or nuclear mutations of electron transport chain (ETC) genes to evolve under three sexual systems: facultatively outcrossing (wildtype), obligately selfing, and obligately outcrossing. Among facultatively outcrossing lines, we found evolution of increased male frequency in at least one replicate line of all four ETC mutant backgrounds tested—nuclear isp-1 , mitochondrial cox-1 and ctb-1 , and an isp-1 IV; ctb-1M mitonuclear double mutant—and confirmed for a single line set ( cox-1 ) that increased male frequency also resulted in successful outcrossing. We previously found the same result for lines evolved from another nuclear ETC mutant, gas-1 . For several lines in the current experiment, however, male frequency declined to wildtype levels (near 0%) in later generations. Male frequency did not change in lines evolved from a wildtype control strain. Additional phenotypic assays of lines evolved from the mitochondrial cox-1 mutant indicated that evolution of high male frequency was accompanied by evolution of increased male sperm size and mating success with tester females, but that it did not translate into increased mating success with coevolved hermaphrodites. Rather, hermaphrodites’ self-crossed reproductive fitness increased, consistent with sexually antagonistic coevolution. In accordance with evolutionary theory, males and sexual outcrossing may be most beneficial to populations evolving from a state of low ancestral fitness ( gas-1 , as previously reported) and less beneficial or deleterious to those evolving from a state of higher ancestral fitness ( cox-1 ). In support of this idea, the obligately outcrossing fog-2 V; cox-1 M lines exhibited no fitness evolution compared to their ancestor, while facultatively outcrossing lines showed slight upward evolution of fitness, and all but one of the obligately selfing xol-1 X; cox-1 M lines evolved substantially increased fitness—even beyond wildtype levels. This work provides a foundation to directly test the effect of reproductive mode on the evolutionary dynamics of mitonuclear genomes, as well as whether compensatory mutations (nuclear or mitochondrial) can rescue populations from mitochondrial dysfunction. 
    more » « less
  2. Abstract

    Selection that acts in a sex-specific manner causes the evolution of sexual dimorphism. Sex-specific phenotypic selection has been demonstrated in many taxa and can be in the same direction in the two sexes (differing only in magnitude), limited to one sex, or in opposing directions (antagonistic). Attempts to detect the signal of sex-specific selection from genomic data have confronted numerous difficulties. These challenges highlight the utility of “direct approaches,” in which fitness is predicted from individual genotype within each sex. Here, we directly measured selection on Single Nucleotide Polymorphisms (SNPs) in a natural population of the sexually dimorphic, dioecious plant, Silene latifolia. We measured flowering phenotypes, estimated fitness over one reproductive season, as well as survival to the next year, and genotyped all adults and a subset of their offspring for SNPs across the genome. We found that while phenotypic selection was congruent (fitness covaried similarly with flowering traits in both sexes), SNPs showed clear evidence for sex-specific selection. SNP-level selection was particularly strong in males and may involve an important gametic component (e.g., pollen competition). While the most significant SNPs under selection in males differed from those under selection in females, paternity selection showed a highly polygenic tradeoff with female survival. Alleles that increased male mating success tended to reduce female survival, indicating sexual antagonism at the genomic level. Perhaps most importantly, this experiment demonstrates that selection within natural populations can be strong enough to measure sex-specific fitness effects of individual loci.

    Males and females typically differ phenotypically, a phenomenon known as sexual dimorphism. These differences arise when selection on males differs from selection on females, either in magnitude or direction. Estimated relationships between traits and fitness indicate that sex-specific selection is widespread, occurring in both plants and animals, and explains why so many species exhibit sexual dimorphism. Finding the specific loci experiencing sex-specific selection is a challenging prospect but one worth undertaking given the extensive evolutionary consequences. Flowering plants with separate sexes are ideal organisms for such studies, given that the fitness of females can be estimated by counting the number of seeds they produce. Determination of fitness for males has been made easier as thousands of genetic markers can now be used to assign paternity to seeds. We undertook just such a study in S. latifolia, a short-lived, herbaceous plant. We identified loci under sex-specific selection in this species and found more loci affecting fitness in males than females. Importantly, loci with major effects on male fitness were distinct from the loci with major effects on females. We detected sexual antagonism only when considering the aggregate effect of many loci. Hence, even though males and females share the same genome, this does not necessarily impose a constraint on their independent evolution.

     
    more » « less
  3. Abstract

    Under life‐history theories of ageing, increased senescence should follow relatively high reproductive effort. This expectation has rarely been tested against senescence varying between and within the two sexes, although such an approach may clarify the origins of sex‐specific ageing in the context of a given mating system.

    Nazca boobies (Sula granti; a seabird) practise serial monogamy and biparental care. A male‐biased population sex ratio results in earlier and more frequent breeding by females. Based on sex‐specific reproductive schedules, females were expected to show faster age‐related decline for survival and reproduction. Within each sex, high reproductive effort in early life was expected to reduce late‐life performance and accelerate senescence.

    Longitudinal data were used to (a) evaluate the sex specificity of reproductive and actuarial senescence and then (b) test for early‐/late‐life fitness trade‐offs within each sex. Within‐sex analyses inform an interpretation of sex differences in senescence based on costs of reproduction. Analyses incorporated individual heterogeneity in breeding performance and cohort‐level differences in early‐adult environments.

    Females showed marginally more intense actuarial senescence and stronger age‐related declines for fledging success. The opposite pattern (earlier and faster male senescence) was found for breeding probability. Individual reproductive effort in early life positively predicted late‐life reproductive performance in both sexes and thus did not support a causal link between early‐reproduction/late‐life fitness trade‐offs and sex differences in ageing. A high‐quality diet in early adulthood reduced late‐life survival (females) and accelerated senescence for fledging success (males).

    This study documents clear variation in ageing patterns—by sex, early‐adult environment and early‐adult reproductive effort—with implications for the role mating systems and early‐life environments play in determining ageing patterns. Absent evidence for a disposable soma mechanism, patterns of sex differences in senescence may result from age‐ and condition‐dependent mate choice interacting with this population's male‐biased sex ratio and mate rotation.

     
    more » « less
  4. Arkhipova, Irina (Ed.)
    Abstract Genome size has been measurable since the 1940s but we still do not understand genome size variation. Caenorhabditis nematodes show strong conservation of chromosome number but vary in genome size between closely related species. Androdioecy, where populations are composed of males and self-fertile hermaphrodites, evolved from outcrossing, female-male dioecy, three times in this group. In Caenorhabditis, androdioecious genomes are 10–30% smaller than dioecious species, but in the nematode Pristionchus, androdioecy evolved six times and does not correlate with genome size. Previous hypotheses include genome size evolution through: 1) Deletions and “genome shrinkage” in androdioecious species; 2) Transposable element (TE) expansion and DNA loss through large deletions (the “accordion model”); and 3) Differing TE dynamics in androdioecious and dioecious species. We analyzed nematode genomes and found no evidence for these hypotheses. Instead, nematode genome sizes had strong phylogenetic inertia with increases in a few dioecious species, contradicting the “genome shrinkage” hypothesis. TEs did not explain genome size variation with the exception of the DNA transposon Mutator which was twice as abundant in dioecious genomes. Across short and long evolutionary distances Caenorhabditis genomes evolved through small structural mutations including gene-associated duplications and insertions. Seventy-one protein families had significant, parallel decreases across androdioecious Caenorhabditis including genes involved in the sensory system, regulatory proteins and membrane-associated immune responses. Our results suggest that within a dynamic landscape of frequent small rearrangements in Caenorhabditis, reproductive mode mediates genome evolution by altering the precise fates of individual genes, proteins, and the phenotypes they underlie. 
    more » « less
  5. null (Ed.)
    Understanding the pleiotropic consequences of gene drive systems on host fitness is essential to predict their spread through a host population. Here, we study sex-ratio (SR) X-chromosome drive in the fly Drosophila recens , where SR causes the death of Y-bearing sperm in male carriers. SR males only sire daughters, which all carry SR, thus giving the chromosome a transmission advantage. The prevalence of the SR chromosome appears stable, suggesting pleiotropic costs. It was previously shown that females homozygous for SR are sterile, and here, we test for additional fitness costs of SR. We found that females heterozygous for SR have reduced fecundity and that male SR carriers have reduced fertility in conditions of sperm competition. We then use our fitness estimates to parametrize theoretical models of SR drive and show that the decrease in fecundity and sperm competition performance can account for the observed prevalence of SR in natural populations. In addition, we found that the expected equilibrium frequency of the SR chromosome is particularly sensitive to the degree of multiple mating and performance in sperm competition. Together, our data suggest that the mating system of the organism should be carefully considered during the development of gene drive systems. 
    more » « less