skip to main content

Title: Genome sequence of the progenitor of the wheat D genome, Aegilops Tauschii
More Like this
  1. Abstract

    Ferns are notorious for possessing large genomes and numerous chromosomes. Despite decades of speculation, the processes underlying the expansive genomes of ferns are unclear, largely due to the absence of a sequenced homosporous fern genome. The lack of this crucial resource has not only hindered investigations of evolutionary processes responsible for the unusual genome characteristics of homosporous ferns, but also impeded synthesis of genome evolution across land plants. Here, we used the model fern speciesCeratopteris richardiito address the processes (e.g., polyploidy, spread of repeat elements) by which the large genomes and high chromosome numbers typical of homosporous ferns maymore »have evolved and have been maintained. We directly compared repeat compositions in species spanning the green plant tree of life and a diversity of genome sizes, as well as both short- and long-read-based assemblies ofCeratopteris. We found evidence consistent with a single ancient polyploidy event in the evolutionary history ofCeratopterisbased on both genomic and cytogenetic data, and on repeat proportions similar to those found in large flowering plant genomes. This study provides a major stepping-stone in the understanding of land plant evolutionary genomics by providing the first homosporous fern reference genome, as well as insights into the processes underlying the formation of these massive genomes.

    « less
  2. Abstract Cultivated strawberry ( Fragaria × ananassa ) is an important fruit crop species whose fruits are enjoyed by many worldwide. An octoploid of hybrid origin, the complex genome of this species was recently sequenced, serving as a key reference genome for cultivated strawberry and related species of the Rosaceae family. The current annotation of the F. ananassa genome mainly relies on ab initio predictions and, to a lesser extent, transcriptome data. Here, we present the structure and functional reannotation of the F. ananassa genome based on one PacBio full-length RNA library and ninety-two Illumina RNA-Seq libraries. This improved annotationmore »of the F. ananassa genome, v1.0.a2, comprises a total of 108,447 gene models, with 97.85% complete BUSCOs. The models of 19,174 genes were modified, 360 new genes were identified, and 11,044 genes were found to have alternatively spliced isoforms. Additionally, we constructed a strawberry genome database (SGD) for strawberry gene homolog searching and annotation downloading. Finally, the transcriptome of the receptacles and achenes of F. ananassa at four developmental stages were reanalyzed and qualified, and the expression profiles of all the genes in this annotation are also provided. Together, this study provides an updated annotation of the F. ananassa genome, which will facilitate genomic analyses across the Rosaceae family and gene functional studies in cultivated strawberry.« less