skip to main content

Title: A Vacuum-driven Origami “Magic-ball” Soft Gripper
Soft robotics has yielded numerous examples of soft grippers that utilize compliance to achieve impressive grasping performances with great simplicity, adaptability, and robustness. Designing soft grippers with substantial grasping strength while remaining compliant and gentle is one of the most important challenges in this field. In this paper, we present a light-weight, vacuum-driven soft robotic gripper made of an origami “magic-ball” and a flexible thin membrane. We also describe the design and fabrication method to rapidly manufacture the gripper with different combinations of low- cost materials for diverse applications. Grasping experiments demonstrate that our gripper can lift a large variety of objects, including delicate foods, heavy bottles, and other miscellaneous items. The grasp force on 3D-printed objects is also characterized through mechanical load tests. The results reveal that our soft gripper can produce significant grasp force on various shapes using negative pneumatic pressure (vacuum). This new gripper holds the potential for many practical applications that require safe, strong, and simple grasping.
Authors:
Award ID(s):
1830901
Publication Date:
NSF-PAR ID:
10110043
Journal Name:
International Conference on Robotics and Automation (ICRA)
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Soft robotic grippers can gently grasp and maneuver objects. However, they are difficult to model and control due to their highly deformable fingers and complex integration with robotic systems. This paper investigates the design requirements as well as the grasping capabilities and performance of a soft gripper system based on fluidic prestressed composite (FPC) fingers. An analytical model is constructed as follows: each finger is modeled using the chained composite model (CCM); strain energy and work done by pressure and loads are computed using polynomials with unknown coefficients; net energy is minimized using the Rayleigh–Ritz method to calculate themore »deflected equilibrium shapes of the finger as a function of pressure and loads; and coordinate transformation and gripper geometries are combined to analyze the grasping performance. The effects of prestrain, integration angle, and finger overlap on the grasping performance are examined through a parametric study. We also analyze gripping performance for cuboidal and spherical objects and show how the grasping force can be controlled by varying fluidic pressure. The quasi-static responses of fabricated actuators are measured under pressures and loads. It is shown that the actuators’ modeled responses agree with the experimental results. This work provides a framework for the theoretical analysis of soft robotic grippers and the methods presented can be extended to model grippers with different types of actuation.« less
  2. Compliant grasping is crucial for secure handling objects not only vary in shapes but also in mechanical properties. We propose a novel soft robotic gripper with decoupled stiffness and shape control capability for performing adaptive grasping with minimum system complexity. The proposed soft fingers conform to object shapes facilitating the handling of objects of different types, shapes, and sizes. Each soft gripper finger has a length constraining mechanism (an articulable rigid backbone) and is powered by pneumatic muscle actuators. We derive the kinematic model of the gripper and use an empirical approach to simultaneously map input pressures to stiffness controlmore »and bending deformation of fingers. We use these mappings to demonstrate decoupled stiffness and shape (bending) control of various grasping configurations. We conduct tests to quantify the grip quality when holding objects as the gripper changes orientation, the ability to maintain the grip as the gripper is subjected to translational and rotational movements, and the external force perturbations required to release the object from the gripper under various stiffness and shape (bending) settings. The results validate the proposed gripper’s performance and show how the decoupled stiffness and shape control can improve the grasping quality in soft robotic grippers.« less
  3. The ability to grab, hold, and manipulate objects is a vital and fundamental operation in biological and engineering systems. Here, we present a soft gripper using a simple material system that enables precise and rapid grasping, and can be miniaturized, modularized, and remotely actuated. This soft gripper is based on kirigami shells—thin, elastic shells patterned with an array of cuts. The kirigami cut pattern is determined by evaluating the shell’s mechanics and geometry, using a combination of experiments, finite element simulations, and theoretical modeling, which enables the gripper design to be both scalable and material independent. We demonstrate that themore »kirigami shell gripper can be readily integrated with an existing robotic platform or remotely actuated using a magnetic field. The kirigami cut pattern results in a simple unit cell that can be connected together in series, and again in parallel, to create kirigami gripper arrays capable of simultaneously grasping multiple delicate and slippery objects. These soft and lightweight grippers will have applications in robotics, haptics, and biomedical device design.

    « less
  4. Robotic grasping can enable mobile vehicles to physically interact with the environment for delivery, repositioning, or landing. However, the requirements for grippers on mobile vehicles differ substantially from those used for conventional manipulation. Specifically, grippers for dynamic mobile robots should be capable of rapid activation, high force density, low power consumption, and minimal computation. In this work, we present a biologically-inspired robotic gripper designed specifically for mobile platforms. This design exploits a bistable shell to achieve “reflexive” activation based on contact with the environment. The mechanism can close its grasp within 0. 12s without any sensing or control. Electrical inputmore »power is not required for grasping or holding load. The reflexive gripper utilizes a novel pneumatic design to open its grasp with low power, and the gripper can carry slung loads up to 28 times its weight. This new mechanism, including the kinematics, static behavior, control structure, and fabrication, is described in detail. A proof of concept prototype is designed, built, and tested. Experimental results are used to characterize performance and demonstrate the potential of these methods.« less
  5. Abstract In this paper, we present a novel compliant robotic gripper with three variable stiffness fingers. While the shape morphing of the fingers is cable-driven, the stiffness variation is enabled by layer jamming. The inherent flexibility makes compliant gripper suitable for tasks such as grasping soft and irregular objects. However, their relatively low load capacity due to intrinsic compliance limits their applications. Variable stiffness robotic grippers have the potential to address this challenge as their stiffness can be tuned on demand of tasks. In our design, the compliant backbone of finger is made of 3D-printed PLA materials sandwiched between thinmore »film materials. The workflow of the robotic gripper follows two basic steps. First, the compliant skeleton is driven by a servo motor via a tension cable and bend to a desired shape. Second, upon application of a negative pressure, the finger is stiffened up because friction between contact surfaces of layers that prevents their relative movement increases. As a result, their load capacity will be increased proportionally. Tests for stiffness of individual finger and load capacity of the robotic gripper are conducted to validate capability of the design. The results showed a 180-fold increase in stiffness of individual finger and a 30-fold increase in gripper’s load capacity.« less