skip to main content

Title: Comparison of endothelial cell attachment on surfaces of biodegradable polymer-coated magnesium alloys in a microfluidic environment
Polymeric coatings can provide temporary stability to bioresorbable metallic stents at the initial stage of deployment by alleviating rapid degradation and providing better interaction with surrounding vasculature. To understand this interfacing biocompatibility, this study explored the endothelial-cytocompatibility of polymer-coated magnesium (Mg) alloys under static and dynamic conditions compared to that of non-coated Mg alloy surfaces. Poly (carbonate urethane) urea (PCUU) and poly (lactic-co-glycolic acid) (PLGA) were coated on Mg alloys (WE43, AZ31, ZWEKL, ZWEKC) and 316L stainless steel (316L SS, control sample), which were embedded into a microfluidic device to simulate a vascular environment with dynamic flow. The results from attachment and viability tests showed that more cells were attached on the polymer-coated Mg alloys than on non-coated Mg alloys in both static and dynamic conditions. In particular, the attachment and viability on PCUU-coated surfaces were significantly higher than that of PLGA-coated surfaces of WE43 and ZWEKC in both static and dynamic conditions, and of AZ31 in dynamic conditions (P<0.05). The elementary distribution map showed that there were relatively higher Carbon weight percentages and lower Mg weight percentages on PCUU-coated alloys than PLGA-coated alloys. Various levels of pittings were observed underneath the polymer coatings, and the pittings were more severe on more » the surface of Mg alloys that corroded rapidly. Polymer coatings are recommended to be applied on Mg alloys with relatively low corrosion rates, or after pre-stabilizing the substrate. PCUU-coating has more selective potential to enhance the biocompatibility and mitigate the endothelium damage of Mg alloy stenting. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1649243
Publication Date:
NSF-PAR ID:
10110190
Journal Name:
PloS one
Volume:
13
Issue:
10
Page Range or eLocation-ID:
e0205611
ISSN:
1932-6203
Sponsoring Org:
National Science Foundation
More Like this
  1. INTRODUCTION: Orthopedic implants are important therapeutic devices for the management of a wide range of orthopedic conditions. However, bacterial infections of orthopedic implants remain a major problem, and not an uncommon one, leading to an increased rate of osteomyelitis, sepsis, implant failure and dysfunction, etc. Treating these infections is more challenging as the causative organism protects itself by the production of a biofilm over the implant’s surface (1). Infections start by the adhesion and colonization of pathogenic bacteria such as Staphylococcus aureus (SA), Staphylococcus epidermidis (SE), Escherichia coli (E. coli), Methicillin-Resistant Staphylococcus aureus (MRSA), and Multi-Drug Resistant Escherichia coli (MDR E. coli) on the implant’s surfaces. Specifically, Staphylococcus comprises up to two-thirds of all pathogens involved in orthopedic implant infections (2). However, bacterial surface adhesion is a complex process influenced by several factors such as chemical composition, hydrophobicity, magnetization, surface charge, and surface roughness of the implant (3). Considering the intimate association between bacteria and the implant surface, we measured the effect of stainless-steel surface properties on bacterial surface attachment and subsequent formation of biofilms controlling above mentioned factors. METHODS: The prominent bacteria responsible for orthopedic implant infections (SA, SE, E. coli, MRSA, and MDR E. coli) were used inmore »this study. We were able to control the grain size of medical grade 304 and 316L stainless steel without altering their chemical composition (grain size range= 20μm-200nm) (4). Grain size control affected the nano-topography of the material surfaces which was measured by an Atomic Force Microscope (AFM). Grain sizes, such as 0.2, 0.5, 1, 2, 3, 9, and 10 μm, were used both polished and non-polished. All the stainless-steel samples were cleaned by treating with acetone and ethanol under sonication. Triplicates of all polished and non-polished samples with different grain sizes were subjected to magnetization of DM, 0.1T, 0.5T, and 1T, before seeding them with the bacteria. Controls were used in the form of untreated samples. Bacterial were grown in Tryptic Soy Broth (TSB). An actively growing bacterial suspension was seeded onto the stainless-steel discs into 24-well micro-titer plates and kept for incubation. After 24 hours of incubation, the stainless-steel discs were washed with Phosphate Buffer Saline (PBS) to remove the plankton bacteria and allow the sessile bacteria in the biofilm to remain. The degree of development of the bacterial biofilms on the stainless-steel discs were measured using spectrophotometric analysis. For this, the bacterial biofilm was removed from the stainless steel by sonication. The formation of biofilms was also determined by performing a biofilm staining method using Safranin. RESULTS SECTION: AFM results revealed a slight decrease in roughness by decreasing the grain size of the material. Moreover, the samples were segregated into two categories of polished and non-polished samples, in which polishing decreased roughness significantly. After careful analysis we found out that polished surfaces showed a higher degree for biofilm formation in comparison to the non-polished ones. We also observed that bacteria showed a higher rate for biofilm formation for the demagnetized samples, whereas 0.5T magnetization showed the least amount of biofilm formation. After 0.5T, there was no significant change in the rate of biofilm formation on the stainless-steel samples. Altogether, stainless steel samples containing 0.5 μm and less grainsize, and magnetized with 0.5 tesla and stronger magnets demonstrated the least degree of biofilm formation. DISCUSSION: In summary, the results demonstrate that controlling the grain size of medical grade stainless steel can control and mitigate bacterial responses on, and thus possibly infections of, orthopedic implants or other implantable devices. The research was funded by Komatsuseiki Kosakusho Co., Ltd (KSJ: Japan) SIGNIFICANCE/CLINICAL RELEVANCE: Orthopedic implants that more than 70% of them are made of metals (i.e., stainless steel, titanium, and cobalt-chromium alloys) are failing through loosening and breakage due to their limited mechanical properties. On the other hand, the risk of infection for these implants and its financial burden on our society is undeniable. We have seen that our uniformly nanograined stainless steel shows improved mechanical properties (i.e., higher stiffness, hardness, fatigue) as compared to conventional stainless steel along with the reduction of biofilm formation on its surface. These promising results made us to peruse the development of nanograined titanium and cobalt-chromium alloys for resolving the complications of orthopedic implants.« less
  2. Statement of Purpose: Orthopedic implants are important therapeutic devices for the management of a wide range of orthopedic conditions. However, bacterial infections of orthopedic implants remain a major problem, and not an uncommon one, leading to an increased rate of osteomyelitis, sepsis, implant failure and dysfunction, etc. Treating these infections is more challenging as the causative organism protects itself by the production of a biofilm over the implant’s surface (1). Infections start by the adhesion and colonization of pathogenic bacteria such as Staphylococcus aureus (SA), Staphylococcus epidermidis (SE), Escherichia coli (E. coli), Methicillin-Resistant Staphylococcus aureus (MRSA), and Multi-Drug Resistant Escherichia coli (MDR E. coli) on the implant’s surfaces. Specifically, Staphylococcus comprises up to two-thirds of all pathogens involved in orthopedic implant infections (2). However, bacterial surface adhesion is a complex process influenced by several factors such as chemical composition, hydrophobicity, magnetization, surface charge, and surface roughness of the implant (3). Considering the intimate association between bacteria and the implant surface, we measured the effect of stainless-steel surface properties on bacterial surface attachment and subsequent formation of biofilms controlling above mentioned factors. Method: The prominent bacteria responsible for orthopedic implant infections (SA, SE, E. coli, MRSA, and MDR E. coli) weremore »used in this study. We were able to control the grain size of medical grade 304 and 316L stainless steel without altering their chemical composition (grain size range= 20μm-200nm) (4). Grain size control affected the nano-topography of the material surfaces which was measured by an Atomic Force Microscope (AFM). Grain sizes, such as 0.2, 0.5, 1, 2, 3, 9, and 10 μm, were used both polished and non-polished. All the stainless-steel samples were cleaned by treating with acetone and ethanol under sonication. Triplicates of all polished and non-polished samples with different grain sizes were subjected to magnetization of DM, 0.1T, 0.5T, and 1T, before seeding them with the bacteria. Controls were used in the form of untreated samples. Bacterial were grown in Tryptic Soy Broth (TSB). An actively growing bacterial suspension was seeded onto the stainless-steel discs into 24-well micro-titer plates and kept for incubation. After 24 hours of incubation, the stainless-steel discs were washed with Phosphate Buffer Saline (PBS) to remove the plankton bacteria and allow the sessile bacteria in the biofilm to remain. The degree of development of the bacterial biofilms on the stainless-steel discs were measured using spectrophotometric analysis. For this, the bacterial biofilm was removed from the stainless steel by sonication. The formation of biofilms was also determined by performing a biofilm staining method using Safranin. Results: AFM results revealed a slight decrease in roughness by decreasing the grain size of the material. Moreover, the samples were segregated into two categories of polished and non-polished samples, in which polishing decreased roughness significantly. After careful analysis we found out that polished surfaces showed a higher degree for biofilm formation in comparison to the non-polished ones. We also observed that bacteria showed a higher rate for biofilm formation for the demagnetized samples, whereas 0.5T magnetization showed the least amount of biofilm formation. After 0.5T, there was no significant change in the rate of biofilm formation on the stainless-steel samples. Altogether, stainless steel samples containing 0.5 μm and less grainsize, and magnetized with 0.5 tesla and stronger magnets demonstrated the least degree of biofilm formation. Conclusion: In summary, the results demonstrate that controlling the grain size of medical grade stainless steel can control and mitigate bacterial responses on, and thus possibly infections of, orthopedic implants or other implantable devices. The research was funded by Komatsuseiki Kosakusho Co., Ltd (KSJ: Japan)« less
  3. Abstract Recent advances in materials and manufacturing processes have allowed the fabrication of intricate implant surfaces to facilitate bony attachment. However, refinement and evaluation of these new design strategies are hindered by the cost and complications of animal studies, particularly during early iterations in the development process. To address this problem, we have previously constructed and validated an ex-vivo bone bioreactor culture system that can maintain the viability of bone samples for an extended period ex-vivo. In this study, we investigated the mineralization of a titanium wire mesh scaffold under both static and dynamic culturing using our ex vivo bioreactor system. Thirty-six cancellous bone cores were harvested from bovine metatarsals at the time of slaughter and divided into five groups under the following conditions: Group 1) Isolated bone cores placed in static culture, Group 2) Unloaded bone cores placed in static culture in contact with a fiber-mesh metallic scaffold, Group 3) Bone cores placed in contact with a fiber-mesh metallic scaffold under the constant pressure of 150 kPa, Group 4) Bone core placed in contact with a fiber-mesh metallic scaffold and exposed to cyclic loading with continuous perfusion flow of media within the ex-vivo culture system and Group 5) Bone coremore »evaluated on Day 0 to serve as a positive control for comparison with all other groups at weeks 4 and 7. Bone samples within Groups 1–4 were incubated for 4 and 7 weeks and then evaluated using histological examination (H&E) and the Live-Dead assay (Life Technologies). Matrix deposits on the metallic scaffolds were examined with scanning electron microscopy (SEM), while the chemical composition of the matrix was measured using energy-dispersive x-ray spectroscopy (EDX). We found that the viability of bone cores was maintained after seven weeks of loading in our ex vivo system. In addition, SEM images revealed crystallite-like structures on the dynamically loaded metal coupons (Group 4), corresponding to the initial stages of mineralization. EDX results further confirmed the presence of carbon at the interface and calcium phosphates in the matrix. We conclude that a bone bioreactor can be used as an alternate tool for in-vivo bone ingrowth studies of new implant surfaces or coatings.« less
  4. Magnesium–yttrium-rare earth element alloys such as WE43 are potential candidates for future bioabsorbable orthopedic implant materials due to their biocompatibility, mechanical properties similar to human bone, and the ability to completely degrade in vivo . Unfortunately, the high corrosion rate of WE43 Mg alloys in physiological environments and subsequent loss of structural integrity limit the wide applications of these materials. In this study, the effect of chemical heterogeneity and microstructure on the corrosion resistance of two alloys with different metallurgical states was investigated: cast (as in traditional preparation) and as-deposited produced by magnetron sputtering. The corrosion behavior was studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests in blood bank buffered saline solution. It was found that the as-deposited alloy showed more than one order of magnitude reduction in corrosion current density compared to the cast alloy, owing to the elimination of micro-galvanic coupling between the Mg matrix and the precipitates. The microstructure and formation mechanism of corrosion products formed on both alloys were discussed based on immersion tests and direct measurements of X-ray photoelectron spectrometry (XPS) and cross-sectional transmission electron microscopy (TEM) analysis.
  5. Stable poly(styrene-co-2-ethylhexyl acrylate) latex particles with diameter less than 600 nm were prepared by the miniemulsion polymerization of Pickering emulsions stabilized with hexyl-functionalized cellulose nanocrystals (CNC-hexyl-COOHs). Polymer nanocomposites were fabricated by casting of the CNC-stabilized latex particles, and the thermomechanical properties and microstructures of the films were studied and related to the type and amount of stabilizer as well as the processing conditions. Compared to the latex films stabilized with low-molecular-weight sodium dodecyl sulfate (SDS) surfactant, or using a combination of SDS and carboxylic acid CNC-COOHs, films stabilized solely with the alkyl-functionalized CNC-hexyl-COOHs showed much higher storage moduli in the rubbery regime and lower water uptake. Scanning electron microscopy (SEM) revealed a CNC network structure that is formed by excluded volume effects of the latex particles, which concentrates the CNC-hexyl-COOHs into the interstitial space during solvent evaporation. This effect results in the formation of a percolation network at a lower CNC concentration within the latex composite films. The network can be further reinforced by increasing the concentration of CNCs through an “ex situ” process where CNC-hexyl-COOH-stabilized latex particles were mixed with CNC-COOH aqueous dispersions before film casting. The ability to replace low-molecular-weight surfactants in water-based latexes with alkyl-functionalized CNCs thatmore »are not only biosourced but also act as reinforcing agents offers an opportunity to expand the property profile of a variety of commercial products such as paints, coatings, and adhesives.« less