For degradable magnesium (Mg) alloy‐based stents it would be desirable to delay early corrosion to maintain mechanical strength. Similarly, early after stent placement reduced thrombogenicity is an important feature, while chronically, endothelial cell adhesion and vessel integration are desirable. In this study, surface eroding polymers of amino‐grafted poly(1,3‐trimethylene carbonate) (PTMC‐NH2) and PTMC‐NH2combined with sulfobetaine bearing polymer PSB (PTMC‐NHCO‐PSB) are developed, and these polymers are covalently attached onto 6‐phosphonohexanoic acid (PHA)‐coated AZ31 Mg alloy surfaces in sequence. In vitro degradation testing in ovine plasma shows PTMC, PTMC‐NH2, and PTMC‐NHCO‐PSB cast films experience a gradual thickness and mass loss with maintenance of smooth surfaces, confirming surface erosion behavior. The PTMC‐NH2polymer is firmly bound to the PHA‐modified AZ31 surface and demonstrates a resistance to peeling. PTMC, PTMC‐NH2, and PTMC‐NHCO‐PSB coated AZ31 have a lower corrosion rate versus polylactide‐
- Award ID(s):
- 1649243
- PAR ID:
- 10110190
- Date Published:
- Journal Name:
- PloS one
- Volume:
- 13
- Issue:
- 10
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0205611
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract co ‐glycolide coated and untreated AZ31. PTMC‐NHCO‐PSB coated AZ31 inhibits platelet deposition and smooth muscle cell adhesion and growth, but after 2‐week immersion in plasma, this surface supports endothelial cell adhesion and growth. These results suggest PTMC‐NHCO‐PSB surface eroding coating offers a means of controlling corrosion while providing a temporally varying bio‐functionality for biodegradable vascular stent applications. -
Abstract Tracheal stenting currently using non‐degradable stents is commonplace for treatment of trauma, prolonged intubation related adult airway obstructions, and pediatric patients‐associated tracheal stenosis conditions. Degradable tracheal stent placement will avoid complications of stent removal and restenosis. Widespread reports exist on degradable magnesium alloys success for orthopedic and cardiovascular applications but none to date for intra tracheal use. This research explores the use of pure Mg, AZ31, and Mg‐3Y alloys for degradable tracheal stent assessment.
In vitro evaluation of magnesium, prototype stents in a bioreactor simulate the airway environment and corrosion. Micro‐CT imaging and biocompatibility evaluation helped assess the 24‐week degradation of intraluminal alloy stents following implantation in a rat trachealin vivo bypass model. Histological analysis indicate tissue response of the harvested stented trachea segments after each time point. Corrosion studies for each alloy indicate significant differences between the simulated and controlin vitro conditions. AZ31 exhibited the lowest volume loss of 6.8% in saline, while pure Mg displayed the lowest volume loss of 4.6% in simulated airway fluid (SAF), both at 1‐week time points. Significant differences in percentage of total volume lost after 6 months were determined between the alloys over time. MgY alloy displayed the slowest corrosion losing only 15.1% volume after 24 weeks of immersion. Additionally,in vitro magnesium alloy corrosion was not significantly different from the percentage of total volume lostin vivo at 1‐week time point. The study demonstrates promise of magnesium alloys for intraluminal tracheal stent application albeit viability of a clinically translatable model warrants further studies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1844–1853, 2019. -
Airway obstruction conditions are relatively rarely observed in clinical settings but nevertheless, extremely challenging to handle, especially when observed in pediatric patients. Several surgical procedures, including tracheal resection, end-to-end tracheal anastomosis, and tracheoplasty, have been developed and practised of late, to treat airway obstruction. However, the clinical outcome is typically not satisfactory due to airway restenosis conditions that develop following surgery. Various types of stents are currently available for airway stenting ranging from non-degradable silicone tubes and bio-inert metallic stents (bare or coated with polymer matrix) to hybrid silicone tubes strengthened by metallic cores, but none of the stents provides the satisfactory long-term effectiveness. Therefore, there is a significant clinical need for a biodegradable airway stent that would maintain airway patency and totally degrade over time after meeting the desired objectives. The present study aims to investigate biodegradable magnesium-aluminum-zinc-calcium-manganese (AZXM) alloy as a potential tracheal stent. The new AZXM alloy was fabricated by partially replacing aliminum in commercial AZ31 alloy with calcium. The present study demonstrates that calcium preferentially segregates along the grain boundaries as intermetallic phases (Mg2Ca) and is homogeneously distributed in the magnesium matrix. The extruded AZXM alloy showed less pitting, higher corrosion resistance in Hank's Balanced Salt Solution (HBSS) compared to the as-cast and solution-treated AZXM alloys and exhibited optimized mechanical properties. In vitro cytotoxicity evaluation using human trachea epithelial cells demonstrated excellent cyto-compatibility of AZXM alloys compared to pure Mg and commercial AZ31 validated by a very preliminary rabbit in vivo tracheal model study. Preliminary results show that the approach to use biodegradable AZXM alloys as a tracheal stent is indeed promising, although further alloy processing is required to improve the ductility needed followed by a more exhaustive in vivo study to demonstrate full viability for stent applications.
-
null (Ed.)Magnesium–yttrium-rare earth element alloys such as WE43 are potential candidates for future bioabsorbable orthopedic implant materials due to their biocompatibility, mechanical properties similar to human bone, and the ability to completely degrade in vivo . Unfortunately, the high corrosion rate of WE43 Mg alloys in physiological environments and subsequent loss of structural integrity limit the wide applications of these materials. In this study, the effect of chemical heterogeneity and microstructure on the corrosion resistance of two alloys with different metallurgical states was investigated: cast (as in traditional preparation) and as-deposited produced by magnetron sputtering. The corrosion behavior was studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests in blood bank buffered saline solution. It was found that the as-deposited alloy showed more than one order of magnitude reduction in corrosion current density compared to the cast alloy, owing to the elimination of micro-galvanic coupling between the Mg matrix and the precipitates. The microstructure and formation mechanism of corrosion products formed on both alloys were discussed based on immersion tests and direct measurements of X-ray photoelectron spectrometry (XPS) and cross-sectional transmission electron microscopy (TEM) analysis.more » « less
-
Three-dimensional (3D) printing is implemented for surface modification of titanium alloy substrates with multilayered biofunctional polymeric coatings. Poly(lactic-co- glycolic) acid (PLGA) and polycaprolactone (PCL) polymers were embedded with amorphous calcium phosphate (ACP) and vancomycin (VA) therapeutic agents to promote osseointegration and antibacterial activity, respectively. PCL coatings revealed a uniform deposition pattern of the ACP-laden formulation and enhanced cell adhesion on the titanium alloy substrates as compared to the PLGA coatings. Scanning electron microscopy and Fourier-transform infrared spectroscopy confirmed a nanocomposite structure of ACP particles showing strong binding with the polymers. Cell viability data showed comparable MC3T3 osteoblast proliferation on polymeric coatings as equivalent to positive controls. In vitro live/dead assessment indicated higher cell attachments for 10 layers (burst release of ACP) as compared to 20 layers (steady release) for PCL coatings. The PCL coatings loaded with the antibacterial drug VA displayed a tunable release kinetics profile based on the multilayered design and drug content of the coatings. Moreover, the concentration of active VA released from the coatings was above the minimum inhibitory concentration and minimum bactericidal concentration, demonstrating its effectiveness against Staphylococcus aureus bacterial strain. This research provides a basis for developing antibacterial biocompatible coatings to promote osseointegration of orthopedic implants.more » « less