skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of endothelial cell attachment on surfaces of biodegradable polymer-coated magnesium alloys in a microfluidic environment
Polymeric coatings can provide temporary stability to bioresorbable metallic stents at the initial stage of deployment by alleviating rapid degradation and providing better interaction with surrounding vasculature. To understand this interfacing biocompatibility, this study explored the endothelial-cytocompatibility of polymer-coated magnesium (Mg) alloys under static and dynamic conditions compared to that of non-coated Mg alloy surfaces. Poly (carbonate urethane) urea (PCUU) and poly (lactic-co-glycolic acid) (PLGA) were coated on Mg alloys (WE43, AZ31, ZWEKL, ZWEKC) and 316L stainless steel (316L SS, control sample), which were embedded into a microfluidic device to simulate a vascular environment with dynamic flow. The results from attachment and viability tests showed that more cells were attached on the polymer-coated Mg alloys than on non-coated Mg alloys in both static and dynamic conditions. In particular, the attachment and viability on PCUU-coated surfaces were significantly higher than that of PLGA-coated surfaces of WE43 and ZWEKC in both static and dynamic conditions, and of AZ31 in dynamic conditions (P<0.05). The elementary distribution map showed that there were relatively higher Carbon weight percentages and lower Mg weight percentages on PCUU-coated alloys than PLGA-coated alloys. Various levels of pittings were observed underneath the polymer coatings, and the pittings were more severe on the surface of Mg alloys that corroded rapidly. Polymer coatings are recommended to be applied on Mg alloys with relatively low corrosion rates, or after pre-stabilizing the substrate. PCUU-coating has more selective potential to enhance the biocompatibility and mitigate the endothelium damage of Mg alloy stenting.  more » « less
Award ID(s):
1649243
PAR ID:
10110190
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
PloS one
Volume:
13
Issue:
10
ISSN:
1932-6203
Page Range / eLocation ID:
e0205611
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Magnesium–yttrium-rare earth element alloys such as WE43 are potential candidates for future bioabsorbable orthopedic implant materials due to their biocompatibility, mechanical properties similar to human bone, and the ability to completely degrade in vivo . Unfortunately, the high corrosion rate of WE43 Mg alloys in physiological environments and subsequent loss of structural integrity limit the wide applications of these materials. In this study, the effect of chemical heterogeneity and microstructure on the corrosion resistance of two alloys with different metallurgical states was investigated: cast (as in traditional preparation) and as-deposited produced by magnetron sputtering. The corrosion behavior was studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests in blood bank buffered saline solution. It was found that the as-deposited alloy showed more than one order of magnitude reduction in corrosion current density compared to the cast alloy, owing to the elimination of micro-galvanic coupling between the Mg matrix and the precipitates. The microstructure and formation mechanism of corrosion products formed on both alloys were discussed based on immersion tests and direct measurements of X-ray photoelectron spectrometry (XPS) and cross-sectional transmission electron microscopy (TEM) analysis. 
    more » « less
  2. Three-dimensional (3D) printing is implemented for surface modification of titanium alloy substrates with multilayered biofunctional polymeric coatings. Poly(lactic-co- glycolic) acid (PLGA) and polycaprolactone (PCL) polymers were embedded with amorphous calcium phosphate (ACP) and vancomycin (VA) therapeutic agents to promote osseointegration and antibacterial activity, respectively. PCL coatings revealed a uniform deposition pattern of the ACP-laden formulation and enhanced cell adhesion on the titanium alloy substrates as compared to the PLGA coatings. Scanning electron microscopy and Fourier-transform infrared spectroscopy confirmed a nanocomposite structure of ACP particles showing strong binding with the polymers. Cell viability data showed comparable MC3T3 osteoblast proliferation on polymeric coatings as equivalent to positive controls. In vitro live/dead assessment indicated higher cell attachments for 10 layers (burst release of ACP) as compared to 20 layers (steady release) for PCL coatings. The PCL coatings loaded with the antibacterial drug VA displayed a tunable release kinetics profile based on the multilayered design and drug content of the coatings. Moreover, the concentration of active VA released from the coatings was above the minimum inhibitory concentration and minimum bactericidal concentration, demonstrating its effectiveness against Staphylococcus aureus bacterial strain. This research provides a basis for developing antibacterial biocompatible coatings to promote osseointegration of orthopedic implants. 
    more » « less
  3. Abstract We developed the dynamic assembly of the hydrogen‐bonded multilayers of (poly(N‐vinylpyrrolidone/poly(methacrylic acid)) (PVPON/PMAA)) and compared their properties to the static multilayers. We found that dynamic multilayers, wherein a planar substrate is shaken during polymer adsorption, leads to a 15‐time faster deposition of the planar coatings. The thicknesses and roughness of the dynamic coatings were found to be ⁓30% larger than those of static (no shaking) multilayer films as measured by spectroscopic ellipsometry and atomic force microscopy. We examined the film growth, mechanical properties, wettability, hydration, and pH stability of the planar static and dynamic multilayers and demonstrated that these properties were insignificantly affected by the assembly mode. Both static and dynamic coatings produced microporous films when exposed to pH = 5.9, close to the film critical dissolution pH = 6. We discovered that during the release of the multilayer films into a solution to produce free‐standing films either as planar membranes or multilayer capsule shells, the molecular chain rearrangements result in the decreased roughness for both static and dynamic multilayers and lead to a decreased thickness of the dynamic multilayers. Our findings can help develop a rapid synthesis of thicker nanostructured polymer coatings for sensing and controlled delivery applications. 
    more » « less
  4. Abstract Fatigue short‐cracks in Mg alloys display complex growth behavior due to high plastic anisotropy and crack path dependence on local microstructural features. In this study, the three‐dimensional crystallography of short‐crack paths in Mg alloy WE43 was characterized by mapping near‐field high‐energy X‐ray diffraction microscopy (HEDM) reconstructed grain maps to high‐resolution X‐ray CT reconstructions of the fracture surfaces in the crack initiation and short‐crack growth regions of six ultrasonic fatigue specimens. Crack–grain–boundary intersections were analyzed at 81 locations across the six crack paths. The basal intragranular, non‐basal intragranular, or intergranular character of short‐crack growth following each boundary intersection was correlated to crystallographic and geometric parameters of the trailing and leading grains, three‐dimensional grain boundary plane, and advancing crack front. The results indicate that crack paths are dependent on the combined crystallographic and geometric character of the local microstructure, and crack path prediction can be improved by use of dimensionality reduction on subsets of high‐linear‐correlation microstructural parameters. 
    more » « less
  5. Abstract The aim of this study was to develop a novel biodegradable magnesium (Mg) alloy for bone implant applications. We used scandium (Sc; 2 wt %) and strontium (Sr; 2 wt %) as alloying elements due to their high biocompatibility, antibacterial efficacy, osteogenesis, and protective effects against corrosion. In the present work, we also examined the effect of a heat treatment process on the properties of the Mg‐Sc‐Sr alloy. Alloys were manufactured using a metal casting process followed by heat treatment. The microstructure, corrosion, mechanical properties, antibacterial activity, and osteogenic activity of the alloy were assessed in vitro. The results showed that the incorporation of Sc and Sr elements controlled the corrosion, reduced the hydrogen generation, and enhanced mechanical properties. Furthermore, alloying with Sc and Sr demonstrated a significantly enhanced antibacterial activity and decreased biofilm formation compared to control Mg. Also, culturing Mg‐Sc‐Sr alloy with human bone marrow‐derived mesenchymal stromal cells showed a high degree of biocompatibility (>90% live cells) and a significant increase in osteoblastic differentiation in vitro shown by Alizarin red staining and alkaline phosphatase activity. Based on these results, the Mg‐Sc‐Sr alloy heat‐treated at 400°C displayed optimal mechanical properties, corrosion rate, antibacterial efficacy, and osteoinductivity. These characteristics make the Mg‐Sc‐Sr alloy a promising candidate for biodegradable orthopedic implants in the fixation of bone fractures such as bone plate‐screws or intramedullary nails. 
    more » « less