skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impacts of climate change on future air quality and human health in China
In recent years, air pollution has caused more than 1 million deaths per year in China, making it a major focus of public health efforts. However, future climate change may exacerbate such human health impacts by increasing the frequency and duration of weather conditions that enhance air pollution exposure. Here, we use a combination of climate, air quality, and epidemiological models to assess future air pollution deaths in a changing climate under Representative Concentration Pathway 4.5 (RCP4.5). We find that, assuming pollution emissions and population are held constant at current levels, climate change would adversely affect future air quality for >85% of China’s population (∼55% of land area) by the middle of the century, and would increase by 3% and 4% the population-weighted average concentrations of fine particulate matter (PM2.5) and ozone, respectively. As a result, we estimate an additional 12,100 and 8,900 Chinese (95% confidence interval: 10,300 to 13,800 and 2,300 to 14,700, respectively) will die per year from PM2.5 and ozone exposure, respectively. The important underlying climate mechanisms are changes in extreme conditions such as atmospheric stagnation and heat waves (contributing 39% and 6%, respectively, to the increase in mortality). Additionally, greater vulnerability of China’s aging population will further increase the estimated deaths from PM2.5 and ozone in 2050 by factors of 1 and 3, respectively. Our results indicate that climate change and more intense extremes are likely to increase the risk of severe pollution events in China. Managing air quality in China in a changing climate will thus become more challenging.  more » « less
Award ID(s):
1639318
PAR ID:
10110324
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
ISSN:
0027-8424
Page Range / eLocation ID:
201812881
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a novel source attribution approach that incorporates satellite data into GEOS-Chem adjoint simulations to characterize the species-specific, regional, and sectoral contributions of daily emissions for 3 air pollutants: fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2). This approach is implemented for Washington, DC, first for 2011, to identify urban pollution sources, and again for 2016, to examine the pollution response to changes in anthropogenic emissions. In 2011, anthropogenic emissions contributed an estimated 263 (uncertainty: 130–444) PM2.5- and O3-attributable premature deaths and 1,120 (391–1795) NO2 attributable new pediatric asthma cases in DC. PM2.5 exposure was responsible for 90% of these premature deaths. On-road vehicle emissions contributed 51% of NO2-attributable new asthma cases and 23% of pollution-attributable premature deaths, making it the largest contributing individual sector to DC’s air pollution–related health burden. Regional emissions, originating from Maryland, Virginia, and Pennsylvania, were the most responsible for pollution-related health impacts in DC, contributing 57% of premature deaths impacts and 89% of asthma cases. Emissions from distant states contributed 34% more to PM2.5 exposure in the wintertime than in the summertime, occurring in parallel with strong wintertime westerlies and a reduced photochemical sink. Emission reductions between 2011 and 2016 resulted in health benefits of 76 (28–149) fewer pollution-attributable premature deaths and 227 (2–617) fewer NO2-attributable pediatric asthma cases. The largest sectors contributing to decreases in pollution-related premature deaths were energy generation units (26%) and on-road vehicles (20%). Decreases in NO2-attributable pediatric asthma cases were mostly due to emission reductions from on-road vehicles (63%). Emission reductions from energy generation units were found to impact PM2.5 more than O3, while on-road vehicle emission reductions impacted O3 proportionally more than PM2.5. This novel method is capable of capturing the sources of urban pollution at fine spatial and temporal scales and is applicable to many urban environments, globally. 
    more » « less
  2. Abstract Heavy-duty vehicles (HDVs) disproportionately contribute to the creation of air pollutants and emission of greenhouse gases—with marginalized populations unequally burdened by the impacts of each. Shifting to non-emitting technologies, such as electric HDVs (eHDVs), is underway; however, the associated air quality and health implications have not been resolved at equity-relevant scales. Here we use a neighbourhood-scale (~1 km) air quality model to evaluate air pollution, public health and equity implications of a 30% transition of predominantly diesel HDVs to eHDVs over the region surrounding North America’s largest freight hub, Chicago, IL. We find decreases in nitrogen dioxide (NO2) and fine particulate matter (PM2.5) concentrations but ozone (O3) increases, particularly in urban settings. Over our simulation domain NO2and PM2.5reductions translate to ~590 (95% confidence interval (CI) 150–900) and ~70 (95% CI 20–110) avoided premature deaths per year, respectively, while O3increases add ~50 (95% CI 30–110) deaths per year. The largest pollutant and health benefits simulated are within communities with higher proportions of Black and Hispanic/Latino residents, highlighting the potential for eHDVs to reduce disproportionate and unjust air pollution and associated air-pollution attributable health burdens within historically marginalized populations. 
    more » « less
  3. null (Ed.)
    Future air quality will be driven by changes in air pollutant emissions, but also changes in climate. Here, we review the recent literature on future air quality scenarios and projected changes in effects on human health, crops and ecosystems. While there is overlap in the scenarios and models used for future projections of air quality and climate effects on human health and crops, similar efforts have not been widely conducted for ecosystems. Few studies have conducted joint assessments across more than one sector. Improvements in future air quality effects on human health are seen in emission reduction scenarios that are more ambitious than current legislation. Larger impacts result from changing particulate matter (PM) abundances than ozone burdens. Future global health burdens are dominated by changes in the Asian region. Expected future reductions in ozone outside of Asia will allow for increased crop production. Reductions in PM, although associated with much higher uncertainty, could offset some of this benefit. The responses of ecosystems to air pollution and climate change are long-term, complex, and interactive, and vary widely across biomes and over space and time. Air quality and climate policy should be linked or at least considered holistically, and managed as a multi-media problem. This article is part of a discussion meeting issue ‘Air quality, past present and future’. 
    more » « less
  4. Abstract Despite improvements in ambient air quality in the US in recent decades, many people still experience unhealthy levels of pollution. At present, national‐level alert‐day identification relies predominately on surface monitor networks and forecasters. Satellite‐based estimates of surface air quality have rapidly advanced and have the capability to inform exposure‐reducing actions to protect public health. At present, we lack a robust framework to quantify public health benefits of these advances in applications of satellite‐based atmospheric composition data. Here, we assess possible health benefits of using geostationary satellite data, over polar orbiting satellite data, for identifying particulate air quality alert days (24hr PM2.5 > 35 μg m−3) in 2020. We find the more extensive spatiotemporal coverage of geostationary satellite data leads to a 60% increase in identification of person‐alerts (alert days × population) in 2020 over polar‐orbiting satellite data. We apply pre‐existing estimates of PM2.5exposure reduction by individual behavior modification and find these additional person‐alerts may lead to 1,200 (800–1,500) or 54% more averted PM2.5‐attributable premature deaths per year, if geostationary, instead of polar orbiting, satellite data alone are used to identify alert days. These health benefits have an associated economic value of 13 (8.8–17) billion dollars ($2019) per year. Our results highlight one of many potential applications of atmospheric composition data from geostationary satellites for improving public health. Identifying these applications has important implications for guiding use of current satellite data and planning future geostationary satellite missions. 
    more » « less
  5. Abstract. Our work explores the impact of two important dimensions of landsystem changes, land use and land cover change (LULCC) as well as directagricultural reactive nitrogen (Nr) emissions from soils, on ozone(O3) and fine particulate matter (PM2.5) in terms of air quality overcontemporary (1992 to 2014) timescales. We account for LULCC andagricultural Nr emissions changes with consistent remote sensingproducts and new global emission inventories respectively estimating theirimpacts on global surface O3 and PM2.5 concentrations as well as Nrdeposition using the GEOS-Chem global chemical transport model. Over thistime period, our model results show that agricultural Nr emissionchanges cause a reduction of annual mean PM2.5 levels over Europe andnorthern Asia (up to −2.1 µg m−3) while increasing PM2.5 levels in India, China and the eastern US (up to +3.5 µg m−3). Land cover changes induce small reductions in PM2.5 (up to −0.7 µg m−3) over Amazonia, China and India due to reduced biogenic volatile organic compound (BVOC) emissions and enhanced deposition of aerosol precursor gases (e.g., NO2, SO2). Agricultural Nr emissionchanges only lead to minor changes (up to ±0.6 ppbv) in annual meansurface O3 levels, mainly over China, India and Myanmar. Meanwhile, ourmodel result suggests a stronger impact of LULCC on surface O3 over the time period across South America; the combination of changes in drydeposition and isoprene emissions results in −0.8 to +1.2 ppbv surfaceozone changes. The enhancement of dry deposition reduces the surface ozone level (up to −1 ppbv) over southern China, the eastern US and central Africa. The enhancement of soil NO emission due to crop expansion also contributes to surface ozone changes (up to +0.6 ppbv) over sub-Saharan Africa. Incertain regions, the combined effects of LULCC and agricultural Nr emission changes on O3 and PM2.5 air quality can be comparable (>20 %) to anthropogenic emission changes over the same time period. Finally, we calculate that the increase in global agricultural Nr emissions leads to a net increase in global land area (+3.67×106km2) that potentially faces exceedance of the critical Nr load (>5 kg N ha−1 yr−1). Our result demonstrates the impacts of contemporary LULCC and agricultural Nr emission changes on PM2.5 and O3 in terms of air quality, as well as the importanceof land system changes for air quality over multidecadal timescales. 
    more » « less