This dataset contains information on cryostratigraphy and ground-ice content of the upper permafrost, which was based on the results of 22 field trips in 2018-2023. Field studies were performed in various regions of Alaska and Canadian Arctic including the following study areas: Utqiagvik (former Barrow), Teshekpuk Lake, Prudhoe Bay Oilfield, Toolik Lake, Jago River, Itkillik River, Anaktuvuk River, Fairbanks, Dalton Highway, Glennallen, Point Lay, Bylot Island (Canada), Inuvik-Tuktoyaktuk (Canada). Cryostratigraphy of the upper permafrost was studied mainly in coastal and riverbank exposures and frozen cores obtained from drilling with the SIPRE corer. Permafrost exposures and cores were described and photographed in the field, and obtained soil samples were delivered to the University of Alaska Fairbanks for additional descriptions and analyses. Ice contents of frozen soils (including gravimetric and volumetric moisture content, excess-ice content) were measured. The dataset includes cryostratigraphic descriptions, gravimetric (GMC) and volumetric (VMC) moisture content, excess-ice content (EIC), electrical conductivity (EC) and photographs of the permafrost exposures and frozen cores obtained from boreholes. 
                        more » 
                        « less   
                    
                            
                            Recent Advances (2008-2015) in the Study of Ground Ice and Cryostratigraphy: Recent Advances in the Study of Ground Ice and Cryostratigraphy
                        
                    - Award ID(s):
- 1023623
- PAR ID:
- 10110442
- Date Published:
- Journal Name:
- Permafrost and Periglacial Processes
- Volume:
- 27
- Issue:
- 4
- ISSN:
- 1045-6740
- Page Range / eLocation ID:
- 377 to 389
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This dataset contains information on cryostratigraphy and ground-ice content of the upper permafrost , which was based on the results of field work in the Utqiagvik (former Barrow, Western Coastal Plain [CPW]), Teshekpuk Lake (Central Coastal Plain [CPC]), Inigok (Sand Sea [SS] and Loess Belt [LB]), Oumalik (LB), and Atqasuk (LB) study areas, northern Alaska (April 16 - May 2, 2019). Cryostratigraphy was studied mainly in drained-lakes basins (DLB); several boreholes were drilled at the primary surface of the Arctic Coastal Plain (CPC and SS) and yedoma surface (LB). A total of 28 boreholes were drilled through the frozen active layer and the upper permafrost, 19 of them were drilled in DLB, 6 – at the main surface near weather stations, and 3 – in the Pik dunes area. Permafrost drilling was performed with the SIPRE corer. Entire cores were described and photographed in the field, and more than 33 meters of frozen cores were delivered to the University of Alaska Fairbanks cold room for additional descriptions and analyses (carbon-14, ice content). During the lab study of the cores, more than 200 samples were taken for evaluation of ice content (including gravimetric and volumetric moisture content, excess-ice content) of frozen soils. The dataset includes cryostratigraphic descriptions, ice-content values, and photographs of the frozen cores obtained from 28 boreholes.more » « less
- 
            Abstract Isothiazoles represent an important class of five‐membered sulfur heterocycles that are widely utilized in medicinal chemistry and organic synthesis due to the unique properties of two electronegative heteroatoms in a 1,2‐relationship. However, in contrast to other 1,2‐azoles, the facile assembly of isothiazoles has always been considered a substantial challenge. In the last decade, major advances have taken place in the fields of synthesis and functionalization of isothiazoles that make them accessible to a wide range of interested chemists through unprecedented pathways. New condensation methods have emerged that address the challenges posed by unstable thiohydroxylamine. New metal‐catalyzed approaches have been reported that deliver densely decorated isothiazoles bearing various sensitive functional groups. New functionalization strategies have been developed through both cross‐coupling and direct C−H activation chemistry. Finally, the emergence of novel heterocyclic architectures based on isothiazole opens the door for future investigations of this versatile heterocyclic scaffold. This review covers the period from January 2004 to December 2018 and is intended as a sequel to the review on isoxazoles, which represent another class of synthetically‐important 1,2‐azoles (seeAdv. Synth. Catal.2015,357, 2583–2614). magnified imagemore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    