Summary The human brain is a directional network system, in which brain regions are network nodes and the influence exerted by one region on another is a network edge. We refer to this directional information flow from one region to another as directional connectivity. Seizures arise from an epileptic directional network; abnormal neuronal activities start from a seizure onset zone and propagate via a network to otherwise healthy brain regions. As such, effective epilepsy diagnosis and treatment require accurate identification of directional connections among regions, i.e., mapping of epileptic patients’ brain networks. This article aims to understand the epileptic brain network using intracranial electroencephalographic data—recordings of epileptic patients’ brain activities in many regions. The most popular models for directional connectivity use ordinary differential equations (ODE). However, ODE models are sensitive to data noise and computationally costly. To address these issues, we propose a high-dimensional state-space multivariate autoregression (SSMAR) model for the brain’s directional connectivity. Different from standard multivariate autoregression and SSMAR models, the proposed SSMAR features a cluster structure, where the brain network consists of several clusters of densely connected brain regions. We develop an expectation–maximization algorithm to estimate the proposed model and use it to map the interregional networks of epileptic patients in different seizure stages. Our method reveals the evolution of brain networks during seizure development.
more »
« less
Computing Functional Brain Connectivity in Neurological Disorders: Efficient Processing and Retrieval of Electrophysiological Signal Data
Brain functional network connectivity is an important measure for characterizing changes in a variety of neurological disorders, for example Alzheimer’s Disease, Parkinson Disease, and Epilepsy. Epilepsy is a serious neurological disorder affecting more than 50 million persons worldwide with severe impact on the quality of life of patients and their family members due to recurrent seizures. More than 30% of epilepsy patients are refractive to pharmacotherapy and are considered for resection to disrupt epilepsy seizure networks. However, 20-50% of these patients continue to have seizures after surgery. Therefore, there is a critical need to gain new insights into the characteristics of epilepsy seizure networks involving one of more brain regions and accurately delineate epileptogenic zone as a target for surgery. Although there is growing availability of large volume of high resolution stereotactic electroencephalogram (SEEG) data recorded from intracranial electrodes during presurgical evaluation of patients, there are significant informatics challenges associated with processing and analyzing this large signal dataset for characterizing epilepsy seizure networks. In this paper, we describe the development and application of a high-performance indexing structure for efficient retrieval of large-scale SEEG signal data to compute seizure network patterns corresponding to brain functional connectivity networks. This novel Neuro-Integrative Connectivity (NIC) search and retrieval method has been developed by extending the red-black tree index model together with an efficient lookup algorithm. We systematically perform a comparative evaluation of the proposed NIC index using de-identified SEEG data from a patient with temporal lobe epilepsy to retrieve segments of signal data corresponding to multiple seizure events and demonstrate the significant advantages of the NIC index as compared to existing methods. This new NIC Index enables faster computation of brain functional connectivity measures in epilepsy patients for large-scale network analysis and potentially provide new insights into the organization as well as evolution of seizure networks in epilepsy patients.
more »
« less
- Award ID(s):
- 1636850
- PAR ID:
- 10110488
- Date Published:
- Journal Name:
- AMIA Jt Summits Transl Sci Proc.
- Page Range / eLocation ID:
- 107–116
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The accurate characterization of how different brain structures interact in terms of both structural and functional networks is an area of active research in neuroscience. A better understanding of these interactions can potentially lead to targeted treatments and improved therapies for many neurological disorders, such as epilepsy, which alone affects over 65 million people worldwide. The study of functional connectivity networks in epilepsy, which is characterized by abnormalities in brain electrical activity, will help to provide new insights into the onset and progression of this complex neurological disorder. In this chapter, we discuss statistical signal processing techniques and their use in determining functional connectivity among brain regions exhibiting epileptic activity. We also discuss computational challenges associated with deriving functional connectivity measures from neurological Big Data, and we introduce our highly scalable signal processing pipeline for quantifying functional connectivity with the goal of addressing these challenges and potentially advancing understanding of the underlying mechanisms of epilepsy. This pipeline makes use of a novel signal data format that facilitates storing and retrieving data in a distributed computing environment. We conclude the chapter by describing our current activities and proposed plans for improving our computational pipeline, such as the inclusion of biomedical ontologies for semantic annotation in order to facilitate the integration and retrieval of signal data.more » « less
-
Epilepsy is one of the most common neurological diseases globally, affecting around 50 million people worldwide. Fortunately, up to 70 percent of people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The scalp-based EEG test, despite being the gold standard for diagnosing epilepsy, is costly, necessitates hospitalization, demands skilled professionals for operation, and is discomforting for users. In this paper, we propose EarSD, a novel lightweight, unobtrusive, and socially acceptable ear-worn system to detect epileptic seizure onsets by measuring the physiological signals from behind the user's ears. EarSD includes an integrated custom-built sensing, computing, and communication PCB to collect and amplify the signals of interest, remove the noises caused by motion artifacts and environmental impacts, and stream the data wirelessly to the computer or mobile phone nearby, where data are uploaded to the host computer for further processing. We conducted both in-lab and in-hospital experiments with epileptic seizure patients who were hospitalized for seizure studies. The preliminary results confirm that EarSD can detect seizures with up to 95.3 percent accuracy by just using classical machine learning algorithms.more » « less
-
Over one third of the estimated 3 million people with epilepsy in the United States are medication resistant. Responsive neurostimulation from chronically implanted electrodes provides a promising treatment alternative to resective surgery. However, determining optimal personalized stimulation parameters, including when and where to intervene to guarantee a positive patient outcome, is a major open challenge. Network neuroscience and control theory offer useful tools that may guide improvements in parameter selection for control of anomalous neural activity. Here we use a method to characterize dynamic controllability across consecutive effective connectivity (EC) networks based on regularized partial correlations between implanted electrodes during the onset, propagation, and termination regimes of 34 seizures. We estimate regularized partial correlation adjacency matrices from 1-s time windows of intracranial electrocorticography recordings using the Graphical Least Absolute Shrinkage and Selection Operator (GLASSO). Average and modal controllability metrics calculated from each resulting EC network track the time-varying controllability of the brain on an evolving landscape of conditionally dependent network interactions. We show that average controllability increases throughout a seizure and is negatively correlated with modal controllability throughout. Our results support the hypothesis that the energy required to drive the brain to a seizure-free state from an ictal state is smallest during seizure onset, yet we find that applying control energy at electrodes in the seizure onset zone may not always be energetically favorable. Our work suggests that a low-complexity model of time-evolving controllability may offer insights for developing and improving control strategies targeting seizure suppression.more » « less
-
Abstract One-third of epilepsy patients suffer from medication-resistant seizures. While surgery to remove epileptogenic tissue helps some patients, 30–70% of patients continue to experience seizures following resection. Surgical outcomes may be improved with more accurate localization of epileptogenic tissue. We have previously developed novel thin-film, subdural electrode arrays with hundreds of microelectrodes over a 100–1000 mm2 area to enable high-resolution mapping of neural activity. Here, we used these high-density arrays to study microscale properties of human epileptiform activity. We performed intraoperative micro-electrocorticographic recordings in nine patients with epilepsy. In addition, we recorded from four patients with movement disorders undergoing deep brain stimulator implantation as non-epileptic controls. A board-certified epileptologist identified microseizures, which resembled electrographic seizures normally observed with clinical macroelectrodes. Recordings in epileptic patients had a significantly higher microseizure rate (2.01 events/min) than recordings in non-epileptic subjects (0.01 events/min; permutation test, P = 0.0068). Using spatial averaging to simulate recordings from larger electrode contacts, we found that the number of detected microseizures decreased rapidly with increasing contact diameter and decreasing contact density. In cases in which microseizures were spatially distributed across multiple channels, the approximate onset region was identified. Our results suggest that micro-electrocorticographic electrode arrays with a high density of contacts and large coverage are essential for capturing microseizures in epilepsy patients and may be beneficial for localizing epileptogenic tissue to plan surgery or target brain stimulation.more » « less