skip to main content


Title: Thermal Evolution of the Impact‐Induced Cryomagma Chamber Beneath Occator Crater on Ceres
Abstract

The faculae in Occator Crater on dwarf planet Ceres are an accumulation of salts that have been interpreted as cryovolcanic products. Current age estimates from crater counting suggest a maximum 18‐Ma difference between the crater forming impact and the formation of Cerealia Facula, the central and most recent region in the crater. Here we model the thermal evolution of the potential impact‐induced cryomagma chamber beneath Occator Crater and show that it cools in less than 12 Ma. To reach cooling times of 18 Ma requires initial melt volumes exceeding 11,000 km3. However, simulations suggest that smaller initial cryomagma chambers may lead to partial melting of the lower crust. This may allow recharge of the magma chamber by deep brines located in the porous upper mantle of Ceres and may extend the longevity of cryovolcanic activity.

 
more » « less
Award ID(s):
1720349
NSF-PAR ID:
10448822
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
3
ISSN:
0094-8276
Page Range / eLocation ID:
p. 1213-1221
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Telescopic observations have detected an exosphere around Ceres, composed of either water vapor or its photolytic products. Proposed mechanisms for its formation include sublimation or sputtering from solar energetic particles of buried ice, surface ice, or an optically thin seasonal polar cap. We estimate the amount of water vapor produced by known exposures of water ice, detected in Dawn spacecraft image and spectral data and by ice exposures from subresolution impact craters. We use thermal and sublimation modeling to take into account slope, orientation, and, in the case of water ice within craters, shadowing due to crater walls. We use a Monte Carlo approach to calculate the number of ice‐exposing impacts, where they occur on Ceres' surface, and how long the ice within the impact crater remains bright (e.g., less than one monolayer of sublimation lag). We find that the observed water ice patches on Ceres could account for ~0.06 kg/s of water vapor to (with Oxo crater as the main contributor) and that ice‐exposing impacts that remain bright in appearance after one Ceres year supply 0.08–0.56 kg/s of vapor, depending on the regolith volume fraction of the ice. While water ice has not been detected to date at Occator crater, if it were present we find that Occator is unlikely to be a major contributor of vapor. We find a typical background water vapor production rate from all of Ceres, combining surface and buried ice, of about a few tenths of a kilogram per second.

     
    more » « less
  2. Abstract

    Understanding the stress evolution of extinct volcanoes can improve efforts to forecast flank eruptions on active systems. Field, petrographic, and seismic data are combined with numerical modeling to investigate the paleo‐stress field of New Zealand's Akaroa Volcano, or Akaroa Volcanic Complex. Field mapping identifies 86 radially oriented dikes and seven lava domes found only within a narrow elevation range along Akaroa's erosional crater rim. These observations suggest that crater rim dike emplacement resulted from lateral deflection of vertically ascending intrusions from a centralized magma source, which in turn may have facilitated formation of the lava domes, as well as two scoria cones. We postulate that dike deflection occurred along a stress barrier, as neither a compositional change nor structural boundary are present. We use a finite element model (FEM) simulating Akaroa to test how different factors may have influenced the system's stress state and dike geometry. Elastic, non‐flexural (“roller”) model configurations containing a large, oblate, and shallow magma chamber produce stress barriers most conducive to radial dike emplacement along Akaroa's crater rim. These configurations also simulate rapid edifice construction above a preexisting lithospheric “bulge.” Conversely, simulating flexural stresses exerted on the lithosphere by Akaroa's large mass hinder rather than promote radial dike emplacement. Temperature‐dependent viscoelastic relaxation promotes gradual increases in stress barrier elevation, though this effect is strongly dependent on magma chamber parameters. These results suggest that Akaroa was constructed rapidly (within ∼100 kyr) prior to crater rim dike emplacement, which occurred throughout the volcano's remaining active lifespan.

     
    more » « less
  3. Abstract

    The timing of crustal shortening and strike‐slip faulting along the East Kunlun Shan provides insight into the history of surface uplift and may constrain the time at which the Tibetan Plateau reached high elevations. We investigate a series of extensional basins and restraining bends along the Xidatan strand of the Kunlun strike‐slip fault, which provide an ideal setting to unravel the tectonic history of the northern plateau margin. We present new apatite (U‐Th)/He, apatite fission track, and zircon (U‐Th)/He ages and QTQt thermal modeling,40Ar/39Ar fault gouge dating, and structural mapping from the central East Kunlun Shan. Our data suggest that the East Kunlun Shan experienced slow to negligible exhumation until late Cretaceous time, followed by an increase in rate by 65–50 Ma. Along with a ~47 Ma fault gouge age, we posit that the Paleocene–early Eocene was a time of crustal shortening along the northern plateau. Rapid exhumation along transpressional portions of the Xidatan fault initiated by 23–20 Ma, which we interpret as the local onset of strike‐slip faulting. An early Miocene transition from north‐south crustal shortening to left‐lateral shear along the East Kunlun Shan, the onset of normal and strike‐slip faulting in central and southern Tibet by 18 Ma, and lower crustal flow in eastern Tibet by 13 Ma suggest the establishment of orogen‐wide east‐west oriented extension and extrusion by the middle Miocene. The plateau‐wide shift in stress accommodation implies that high gravitational potential energy, and likely high elevation, was attained by the middle Miocene.

     
    more » « less
  4. Abstract

    High‐precision dating of the metamorphic sole of ophiolites can provide insight into the tectonic evolution of ophiolites and subduction zone processes. To understand subduction initiation beneath a young, well‐preserved and well‐characterized ophiolite, we performed coupled zircon laser‐ablation inductively coupled mass spectrometry trace element analyses and high‐precision isotope dilution‐thermal ionization mass spectrometry U–Pb dating on 25 samples from the metamorphic sole of the Samail ophiolite (Oman‐United Arab Emirates). Zircon grains from amphibolite‐ to granulite‐facies (0.8–1.3 GPa, ~700–900°C), garnet‐ and clinopyroxene‐bearing amphibolite samples (n = 18) show systematic trends of decreasing heavy rare earth element slope (HREE; Yb/Dy) with decreasing Yb concentration, reflecting progressive depletion of the HREE during prograde garnet growth. For half of the garnet‐clinopyroxene amphibolite samples, Ti‐in‐zircon temperatures increase, and U–Pb dates young with decreasing HREE slope, consistent with coupled zircon and garnet growth during prograde metamorphism. In the remaining samples, there is no apparent variation in Ti‐in‐zircon temperature with decreasing HREE slope, and the combined U–Pb and geochemical data suggest zircon crystallization along either the prograde to peak or prograde to initial retrograde portions of the metamorphicP–T–tpath. The new data bracket the timing of prograde garnet and zircon growth in the highest grade rocks of the metamorphic sole between 96.698 ± 0.094 and 95.161 ± 0.064 Ma, in contrast with previously published geochronology suggesting prograde metamorphism at ~104 Ma. Garnet‐free amphibolites and leucocratic pods from lower grade (but still upper amphibolite facies) portions of the sole are uniformly HREE enriched (Yb/Dy > 5) and are ~0.5–1.3 Myr younger than the higher grade rocks from the same localities, constraining the temporal offset between the metamorphism and juxtaposition of the higher and lower grade units. Positive zircon εHf(+6.5 to +14.6) for all but one of the dated amphibolites are consistent with an oceanic basalt protolith for the sole. Our new data indicate that prograde sole metamorphism (96.7–95.2 Ma) immediately predated and overlapped growth of the overlying ophiolite crust (96.1–95.2 Ma). The ~600 ky offset between the onset of sole metamorphism in the northern portion of the ophiolite versus the start of ophiolite magmatism is an order of magnitude shorter than previously proposed (~8 Ma) and is consistent with either spontaneous subduction initiation or an abbreviated period of initial thrusting during induced subduction initiation. Taken together, the sole and ophiolite crust preserve a record of the first ~1.5 Myr of subduction. A gradient in the initiation of high‐grade metamorphism from the northwest (96.7 Ma) to southeast (96.0–95.7 Ma) may record propagation of the nascent subduction zone and/or variations in subduction rate along the length of the ophiolite.

     
    more » « less
  5. Abstract

    The presence of mélange at the subduction interface influences numerous geochemical and geophysical processes. However, the relationship between the timescales of mélange development, deformation, and resultant mass transport is poorly understood. Here, we use Sm‐Nd garnet geochronology to elucidate the timing of peak metamorphism for five garnet amphibolite tectonic blocks from the amphibolite‐facies mélange zone of the Catalina Schist (Santa Catalina Island, CA). Ages range from 108 to 116 Ma and do not appear to correlate with the peak metamorphic temperature recorded by each block (between 640 and 740°C). The lack of correlation between age and peak temperature favors the tectonic mixing model previously proposed for the unit. These ages overlap with previous estimates of 111–114 Ma for peak metamorphism of the mélange zone but are predominately younger than an estimate for the structurally lower coherent amphibolite unit of ca. 115 Ma. White mica40Ar/39Ar ages from previous studies suggest that the units cooled asynchronously to 400–425°C by 106 to 97 Ma at rates between 18 and 43°C/Ma. Collectively, these results demonstrate that mélange formation occurred over at least 8 Myr from 116 to 108 Ma and was followed by cooling. The structural and chronologic relationship between the mélange zone and underlying lower‐grade units indicates that the cooling occurred in conjunction with an underplating event between 109 and 108 Ma. The age discrepancy between the mélange zone and the underlying coherent amphibolite unit may indicate that the two units were juxtaposed either during or after the underplating event.

     
    more » « less