skip to main content


Title: “Don’t punish all of us”: Measuring User Attitudes about Two-Factor Authentication
Two-factor authentication (2FA) defends against password compromise by a remote attacker. We surveyed 4,275 students, faculty, and staff at Brigham Young University to measure user sentiment about Duo 2FA one year after the university adopted it. The results were mixed. A majority of the participants felt more secure using Duo and felt it was easy to use. About half of all participants reported at least one instance of being locked out of their university account because of an inability to authenticate with Duo. We found that students and faculty generally had more negative perceptions of Duo than staff. The survey responses reveal some pain points for Duo users. In response, we offer recommendations that reduce the frequency of 2FA for users. We also suggest UI changes that draw more attention to 2FA methods that do not require WiFi, the “Remember Me” setting, and the help utility.  more » « less
Award ID(s):
1816929
NSF-PAR ID:
10110682
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Fifth European Workshop on Usable Security (EuroUSEC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we present an evaluation and lessons learned from a joint Research Experience for Undergraduates (REU) and Research Experience for Teachers (RET) program focused on energy and sustainability topics within a Materials Science and Engineering program at a public university. This program brought eleven undergraduate science and engineering students with diverse educational and institutional backgrounds and four local middle and high school teachers on campus for an 8-week research experience working in established lab groups at the university. Using the Qualtrics online survey software, we conducted pre-experience and post-experience surveys of the participants to assess the effects of participating in this summer research program. At the beginning of the summer, all participants provided their definition of technical research and described what they hoped to get out of their research experience, and the undergraduate students described their future career and educational plans. At the conclusion of the summer, a post-experience survey presented participants’ with their answers from the beginning of the summer and asked them to reflect on how their understanding of research and future plans involving research changed over the course of the summer experience. Many participants evolved a new understanding of research as a result of participating in the summer experience. In particular, they better recognized the collaborative nature of research and the challenges that can arise as part of the process of doing research. Participants acquired both technical and professional skills that they found useful, such as learning new programming languages, becoming proficient at using new pieces of equipment, reviewing technical literature, and improving presentation and communication skills. Undergraduates benefited from developing new relationships with their peers, while the teacher participants benefited from developing relationships with faculty and staff at the university. While most of the participants felt that they were better prepared for future studies or employment, they did not feel like the summer research experience had a significant impact on their future career or degree plans. Finally, while almost all of the participants described their summer research experience as positive, areas for improvement included better planning and access to mentors, as well as more structured activities for the teachers to adapt their research activities for the classroom. 
    more » « less
  2. A 2019 report from the National Academies on Minority Serving Institutions (MSIs) concluded that MSIs need to change their culture to successfully serve students with marginalized racial and/or ethnic identities. The report recommends institutional responsiveness to meet students “where they are,” metaphorically, creating supportive campus environments and providing tailored academic and social support structures. In recent years, the faculty, staff, and administrators at California State University, Los Angeles have made significant efforts to enhance student success through multiple initiatives including a summer bridge program, first-year in engineering program, etc. However, it has become clear that more profound changes are needed to create a culture that meets students “where they are.” In 2020, we were awarded NSF support for Eco-STEM, an initiative designed to change a system that demands "college-ready" students into one that is "student-ready." Aimed at shifting the deficit mindset prevailing in engineering education, the Eco-STEM project embraces an asset-based ecosystem model that thinks of education as cultivation, and ideas as seeds we are planting, rather than a system of standards and quality checks. This significant paradigm and culture transformation is accomplished through: 1) The Eco-STEM Faculty Fellows’ Community of Practice (CoP), which employs critically reflective dialogue[ ][ ] to enhance the learning environment using asset-based learner-centered instructional approaches; 2) A Leadership CoP with department chairs and program directors that guides cultural change at the department/program level; 3) A Facilitators’ CoP that prepares facilitators to lead, sustain, update, and expand the Faculty and Leadership CoPs; 4) Reform of the teaching evaluation system to sustain the cultural changes. This paper presents the progress and preliminary findings of the Eco-STEM project. During the first project year, the project team formulated the curriculum for the Faculty CoP with a focus on inclusive pedagogy, community cultural wealth, and community building, developed a classroom peer observation tool to provide formative data for teaching reflection, and designed research inquiry tools. The latter investigates the following research questions: 1) To what extent do the Eco-STEM CoPs effectively shift the mental models of participants from a factory-like model to an ecosystem model of education? 2) To what extent does this shift support an emphasis on the assets of our students, faculty, and staff members and, in turn, allow for enhanced motivation, excellence and success? 3) To what extent do new faculty assessment tools designed to provide feedback that reflects ecosystem-centric principles and values allow for individuals within the system to thrive? In Fall 2021, the first cohort of Eco-STEM Faculty Fellows were recruited, and rich conversations and in-depth reflections in our CoP meetings indicated Fellows’ positive responses to both the CoP curriculum and facilitation practices. This paper offers a work-in-progress introduction to the Eco-STEM project, including the Faculty CoP, the classroom peer observation tool, and the proposed research instruments. We hope this work will cultivate broader conversations within the engineering education research community about cultural change in engineering education and methods towards its implementation. 
    more » « less
  3. The culture within engineering colleges and departments has been historically quiet when considering social justice issues. Often the faculty in those departments are less concerned with social issues and are primarily focused on their disciplines and the concrete ways that they can make impacts academically and professionally in their respective arena’s. However, with the social climate of the United States shifting ever more towards a politically charged climate, and current events, particularly the protests against police brutality in recent years, faculty and students are constantly inundated with news of injustices happening in our society. The murder of George Floyd on May 25th 2020 sent shockwaves across the United States and the world. The video captured of his death shared across the globe brought everyone’s attention to the glaringly ugly problem of police brutality, paired with the COVID-19 pandemic, and US election year, the conditions were just right for a social activist movement to grow to a size that no one could ignore. Emmanuel Acho spoke out, motivated by injustices seen in the George Floyd murder, initially with podcasts and then by writing his book “Uncomfortable Converstations with a Black Man” [1]. In his book he touched on various social justice issues such as: racial terminology (i.e., Black or African American), implicit biases, white privilege, cultural appropriation, stereotypes (e.g., the “angry black man”), racial slurs (particularly the n-word), systemic racism, the myth of reverse racism, the criminal justice system, the struggles faced by black families, interracial families, allyship, and anti-racism. Students and faculty at Anonymous University felt compelled to set aside the time to meet and discuss this book in depth through the video conferencing client Zoom. In these meetings diverse facilitators were tasked with bringing the topics discussed by Acho in his book into conversation and pushing attendees of these meetings to consider those topics critically and personally. In an effort to avoid tasking attendees with reading homework to be able to participate in these discussions, the discussed chapter of the audiobook version of Acho’s book was played at the beginning of each meeting. Each audiobook chapter lasted between fifteen and twenty minutes, after which forty to forty-five minutes were left in the hour-long meetings to discuss the content of the chapter in question. Efforts by students and faculty were made to examine how some of the teachings of the book could be implemented into their lives and at Anonymous University. For broader topics, they would relate the content back to their personal lives (e.g., raising their children to be anti-racist and their experiences with racism in American and international cultures). Each meeting was recorded for posterity in the event that those conversations would be used in a paper such as this. Each meeting had at least one facilitator whose main role was to provide discussion prompts based on the chapter and ensure that the meeting environment was safe and inclusive. Naturally, some chapters address topics that are highly personal to some participants, so it was vital that all participants felt comfortable and supported to share their thoughts and experiences. The facilitator would intervene if the conversation veered in an aggressive direction. For example, if a participant starts an argument with another participant in a non-constructive manner, e.g., arguing over the definition of ethnicity, then the facilitator will interrupt, clear the air to bring the group back to a common ground, and then continue the discussion. Otherwise, participants were allowed to steer the direction of the conversation as new avenues of discussion popped up. These meetings were recorded with the goal of returning to these conversations and analyzing the conversations between attendees. Grounded theory will be used to first assess the most prominent themes of discussion between attendees for each meeting [2]. Attendees will be contacted to expressly ask their permission to have their words and thoughts used in this work, and upon agreement that data will begin to be processed. Select attendees will be asked to participate in focus group discussions, which will also be recorded via Zoom. These discussions will focus around the themes pulled from general discussion and will aim to dive deeper into the impact that this experience has had on them as either students or faculty members. A set of questions will be developed as prompts, but conversation is expected to evolve organically as these focus groups interact. These sessions will be scheduled for an hour, and a set of four focus groups with four participants are expected to participate for a total of sixteen total focus group participants. We hope to uncover how this experience changed the lives of the participants and present a model of how conversations such as this can promote diversity, equity, inclusion, and access activities amongst faculty and students outside of formal programs and strategic plans that are implemented at university, college, or departmental levels. 
    more » « less
  4. The lack of diversity and inclusion has been a major challenge affecting engineering programs all over the United States. This problem has been persistent over the years and has been difficult to address despite considerable amount of attention, enriched conversations, and money that has been put towards addressing it. One of the reasons behind this lack of diversity could be the presence of exclusionary behaviors, such as bias and discrimination that permeate the culture of engineering. To address this “wicked” problem, a deeper understanding of current culture and of potential change strategies toward integrating inclusion and diversity is necessary. Our larger NSF funded research project seeks to achieve this understanding through design thinking. While design thinking has been documented to successfully achieve desired outcomes for numerous other problems, its effectiveness as a tool to understand and solve the “wicked problem” of transformation of disciplinary culture related to diversity and inclusion in engineering is not yet known. This Work-in-Progress paper will address the effectiveness of using a design thinking approach by answering the research question: How did stakeholder participants perceive the impact of design sessions on their understanding and value of diversity and inclusion in the professional formation of biomedical engineers? To address this research question, our research team is coordinating six design sessions within each of two engineering schools: Electrical and Computer Engineering (ECE) and Biomedical Engineering (BME) at a large Midwest University. Currently, we have completed the initial phases of the design sessions in the BME school, and hence this paper focuses on insights from preliminary data analysis of BME Design sessions. BME design sessions were conducted with 15 key stakeholders from the program including students, faculty, staff and administrators. Each of the six design session was two hours long. The research team facilitated the inspiration and ideation phase of the design thinking process throughout. Facilitation involved providing prompts and activities to guide the stakeholders through the design thinking processes of problem identification, problem scoping, and prototype solution generation related to diversity and inclusion within the school culture. A mixed-methods approach involving both qualitative and quantitative data analysis is being used to evaluate the efficacy of design thinking as a tool to address diversity and inclusion in professional formation of engineers. Artifacts such as journey maps, culture maps, and design notebooks generated by our stakeholders throughout the design sessions will be qualitatively analyzed to evaluate the role and effectiveness of design thinking in shaping a more diverse and inclusive culture within BME and, eventually ECE. Following the design sessions, participants were interviewed one-on-one to understand how their thoughts about diversity and inclusion in professional formation of biomedical engineers may have changed, and to gather participants’ self-assessment of the design process. Coupled with the interviews, an online survey was administered to assess the participants’ ranking of the solutions generated at the conclusion design sessions in terms of their novelty, importance and feasibility for implementation within their school. This Work-in-Progress paper will discuss relevant findings from initial quantitative analyses of the data collected from the post-design session surveys and is an interim report evaluating participants’ perceptions of the impact of these design sessions on their understanding of diversity and inclusion in professional formation of biomedical engineers. 
    more » « less
  5. There are significant disparities between the conferring of science, technology, engineering, and mathematics (STEM) bachelor’s degrees to minoritized groups and the number of STEM faculty that represent minoritized groups at four-year predominantly White institutions (PWIs). Studies show that as of 2019, African American faculty at PWIs have increased by only 2.3% in the last 20 years. This study explores the ways in which this imbalance affects minoritized students in engineering majors. Our research objective is to describe the ways in which African American students navigate their way to success in an engineering program at a PWI where the minoritized faculty representation is less than 10%. In this study, we define success as completion of an undergraduate degree and matriculation into a Ph.D. program. Research shows that African American students struggle with feeling like the “outsider within” in graduate programs and that the engineering culture can permeate from undergraduate to graduate programs. We address our research objective by conducting interviews using navigational capital as our theoretical framework, which can be defined as resilience, academic invulnerability, and skills. These three concepts come together to denote the journey of an individual as they achieve success in an environment not created with them in mind. Navigational capital has been applied in education contexts to study minoritized groups, and specifically in engineering education to study the persistence of students of color. Research on navigational capital often focuses on how participants acquire resources from others. There is a limited focus on the experience of the student as the individual agent exercising their own navigational capital. Drawing from and adapting the framework of navigational capital, this study provides rich descriptions of the lived experiences of African American students in an engineering program at a PWI as they navigated their way to academic success in a system that was not designed with them in mind. This pilot study took place at a research-intensive, land grant PWI in the southeastern United States. We recruited two students who identify as African American and are in the first year of their Ph.D. program in an engineering major. Our interview protocol was adapted from a related study about student motivation, identity, and sense of belonging in engineering. After transcribing interviews with these participants, we began our qualitative analysis with a priori coding, drawing from the framework of navigational capital, to identify the experiences, connections, involvement, and resources the participants tapped into as they maneuvered their way to success in an undergraduate engineering program at a PWI. To identify other aspects of the participants’ experiences that were not reflected in that framework, we also used open coding. The results showed that the participants tapped into their navigational capital when they used experiences, connections, involvement, and resources to be resilient, academically invulnerable, and skillful. They learned from experiences (theirs or others’), capitalized on their connections, positioned themselves through involvement, and used their resources to achieve success in their engineering program. The participants identified their experiences, connections, and involvement. For example, one participant who came from a blended family (African American and White) drew from the experiences she had with her blended family. Her experiences helped her to understand the cultures of Black and White people. She was able to turn that into a skill to connect with others at her PWI. The point at which she took her familial experiences to use as a skill to maneuver her way to success at a PWI was an example of her navigational capital. Another participant capitalized on his connections to develop academic invulnerability. He was able to build his connections by making meaningful relationships with his classmates. He knew the importance of having reliable people to be there for him when he encountered a topic he did not understand. He cultivated an environment through relationships with classmates that set him up to achieve academic invulnerability in his classes. The participants spoke least about how they used their resources. The few mentions of resources were not distinct enough to make any substantial connection to the factors that denote navigational capital. The participants spoke explicitly about the PWI culture in their engineering department. From open coding, we identified the theme that participants did not expect to have role models in their major that looked like them and went into their undergraduate experience with the understanding that they will be the distinct minority in their classes. They did not make notable mention of how a lack of minority faculty affected their success. Upon acceptance, they took on the challenge of being a racial minority in exchange for a well-recognized degree they felt would have more value compared to engineering programs at other universities. They identified ways they maneuvered around their expectation that they would not have representative role models through their use of navigational capital. Integrating knowledge from the framework of navigational capital and its existing applications in engineering and education allows us the opportunity to learn from African American students that have succeeded in engineering programs with low minority faculty representation. The future directions of this work are to outline strategies that could enhance the path of minoritized engineering students towards success and to lay a foundation for understanding the use of navigational capital by minoritized students in engineering at PWIs. Students at PWIs can benefit from understanding their own navigational capital to help them identify ways to successfully navigate educational institutions. Students’ awareness of their capacity to maintain high levels of achievement, their connections to networks that facilitate navigation, and their ability to draw from experiences to enhance resilience provide them with the agency to unleash the invisible factors of their potential to be innovators in their collegiate and work environments. 
    more » « less