skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing Wound Roll Quality using Measured Stiffness and Models
For those concerned with roll quality it is difficult to suppress the urge to compress the outer surface of a wound roll with your thumb to sense how tightly the roll was wound and how large the internal pressures might be. If several rolls of a given web are wound at unique tensions a human could often arrange these rolls in order of ascending winding tension using their thumb test. The thumb senses the relative conforming deformation of the roll surface. A soft roll would deform more and have greater contact area with our thumb than a hard roll for a given load. The thumb test is most useful on softer rolls wound from nonwovens, tissues, some grades of paper and polymer films but less so on metal coils that deform little in comparison to our thumb. The physics define stiffness as the extent to which an object resists deformation in response to an applied force. This publication reports the results of research where the stiffness of the outer surface of a wound roll is used to characterize the internal residual stresses throughout the roll due to winding. Measurements of stiffness of the outer surface of wound rolls will be demonstrated using commercially available devices along with a proposed handheld device all having greater resolution than the thumb. These measurements will be coupled with models to allow the exploration of internal residual stresses in the wound roll that can be used to investigate winding defects and roll quality.  more » « less
Award ID(s):
1635636
PAR ID:
10110750
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the Fifteenth International Conference on Web Handling
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For convenience, webs are stored in wound rolls. The available web length in a wound roll is one mark of roll quality and a concern for many who process and convert webs. Elastic winding models have proven very precise at estimating the number of layers, the web length wound into a roll, and the residual stresses in the roll at the time of winding. Wound rolls can spend long periods of time in storage, where controlling the environment is cost-prohibitive. As many webs are viscoelastic on some time scale, the residual stresses due to winding will result in creep during storage. The changes in web length due to creep result in web process errors and quality loss, including registration errors and camber webs for example. This publication will focus on the development of a viscoelastic winding model to predict these changes in web length due to creep in a wound roll. The viscoelastic model predicts the tangential stress relaxation and radial creep due to winding residual stresses from a fully viscoelastic orthotropic material behavior. A spunned-meltblown-spunned (SMS) web and a low-density polyethylene (LDPE) web are taken as examples of viscoelastic webs. Their viscoelastic properties are systematically characterized using creep experiments. The results of the model show good agreement with winding and storage experiments for both webs. Finally, webs often do not creep uniformly across their width. An example of this non-uniform creep will be explored. 
    more » « less
  2. The length of web in a wound roll is one mark of roll quality. The available web length in a roll is a concern for many who process webs and those who convert webs. There are algorithms that estimate the length of web and layers in a wound roll based on simple geometry and inputs of inside and outside radius and web thickness. If webs were infinitely stiff in the machine and out-of-plane directions such calculations could be accurate but this is not the case. Webs deform as the result of winder operating conditions such as winding tension and the contact pressures and stresses due to winding. Length calculations based on geometry will err as a result of web deformation in the length and radial directions. Webs are generally subject to tension during transport through process machines, the apparent deformed web length will vary with transport tension. The mission of this paper is to describe means by which the available deformed web length and the number of layers in a wound roll can be accurately predicted. The accuracy of the predictions will be verified by winding trials in the laboratory. The winding trials will demonstrate the levels of accuracy that can be realized on laboratory and production machines. 
    more » « less
  3. While bending strains result from any web being wound at a radius of curvature into a roll, these bending strains are largest for the thicker homogeneous webs and laminates. Many webs are viscoelastic on some time scale and bending stresses will lead to creep. When the web material is unwound and cut into discrete samples, a residual curvature will remain. This curvature, called curl, is the inability for the web to lie flat at no tension. Curl is an undesirable web defect that causes loss of productivity in a subsequent web process. The goal of this research is to develop numerical and experimental tools by which process engineers can explore and mitigate machine direction curl in homogenous webs. Two numerical methods that allow the prediction of curl in a web are developed, a winding software based on bending recovery theory and the implementation of dynamic simulations of winding. One experimental method directly measures the curl online by taking advantage of the anticlastic bending resulting from the curl. All methods applied to a common isotropic LDPE web correlate well with each other and present an opportunity for process engineers to mitigate curl and its negative consequences at low time cost. 
    more » « less
  4. Abstract The once-contiguous Ellesmere Ice Shelf, first reported in writing by European explorers in 1876, and now almost completely disintegrated, has rolling, wave-like surface topography, the origin of which we investigate using a viscous buckling instability analysis. We show that rolls can develop during a winter season (~ 100 d) if sea-ice pressure (depth-integrated horizontal stress applied to the seaward front of the Ellesmere Ice Shelf) is sufficiently large (1 MPa m) and ice thickness sufficiently low (1–10 m). Roll wavelength initially depends only on sea-ice pressure, but evolves over time depending on amplitude growth rate. This implies that a thinner ice shelf, with its faster amplitude growth rate, will have a shorter wavelength compared to a thicker ice shelf when sea-ice pressure is equal. A drawback of the viscous buckling mechanism is that roll amplitude decays once sea-ice pressure is removed. However, non-Newtonian ice rheology, where effective viscosity, and thus roll change rate, depends on total applied stress may constrain roll decay rate to be much slower than growth rate and allow roll persistence from year to year. Whether the viscous-buckling mechanism we explore here ultimately can be confirmed as the origin of the Ellesmere Ice Shelf rolls remains for future research. 
    more » « less
  5. null (Ed.)
    3D woven carbon/epoxy composites are often produced using resin transfer molding technique which includes epoxy curing at elevated temperatures. The process may lead to accumulation of the intrinsic residual stresses during cooling of the material caused by the mismatch between carbon and epoxy coefficients of thermal expansion. This paper deals with implementation of mesoscale finite element models to evaluate intrinsic residual stresses in 3D woven composites. The stresses are determined by correlation of the surface displacements observed after drilling 1-mm diameter blind holes with the corresponding predictions of the models. We investigated how a numerical representation of the composite plate surface affects the correlation between the experimental measurements and numerical predictions and how it influences the evaluation of the process-induced residual stresses. It has been shown for ply-to-ply woven composites with different pick spacing that the absence of the resin layer leads to more accurate interpretation of the experimental measurements. The prediction of the average residual stress in the matrix phase of the composite was found to be sensitive to the surface representation accuracy, however, the residual stress magnitude and distribution was not affected fundamentally. 
    more » « less