skip to main content


Title: A roadmap for exploring the thematic content of ecology journals
Abstract

Ecologists—especially those new to the field—are tasked with finding relevant literature matching their research interests and deciding upon a suitable venue for the publication of their work. To provide a roadmap for early career researchers to identify journals aligned with their interests, we analyzed major research themes found across the top 30 ecology journals and three high‐impact multi‐disciplinary journals (Nature, PNAS,andScience), utilizing an automated content analysis (ACA) of 84,841 article abstracts, titles, and author keywords published over the last four decades. Journals clustered into 10 distinct groups based on 46 research themes identified byACA. We examined the frequency of ecological themes in each of these journal groups to identify the journals most associated with each theme. We found three themes (anthropogenic impacts, disease,andtraits) that occurred at a high frequency in the high‐impact multi‐disciplinary journal group containingNature, PNAS,andScience. Themes that increased in frequency over the last four decades, such asclimate change, traits, anthropogenic, andcellular biology, were found more often in journals with higher impact factors, indicating that emerging research themes in ecology will likely become of interest to a broader readership over time. Our study provides a thematic review as a potential roadmap for junior ecologists to browse and publish journal articles.

 
more » « less
Award ID(s):
1638702
NSF-PAR ID:
10460171
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
10
Issue:
8
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A major goal of invasion genetics is to determine how establishment histories shape non‐native organisms' genotypes and phenotypes. While domesticated species commonly escape cultivation to invade feral habitats, few studies have examined how this process shapes feral gene pools and traits. We collected genomic and phenotypic data from feral chickens (Gallus gallus) on the Hawaiian island of Kauai to (i) ascertain their origins and (ii) measure standing variation in feral genomes, morphology and behaviour. Mitochondrial phylogenies (D‐loop & whole Mt genome) revealed two divergent clades within our samples. The rare clade also contains sequences from Red Junglefowl (the domestic chicken's progenitor) and ancientDNAsequences from Kauai that predate European contact. This lineage appears to have been dispersed into the east Pacific by ancient Polynesian colonists. The more prevalent MtDNAclade occurs worldwide and includes domesticated breeds developed recently in Europe that are farmed within Hawaii. We hypothesize this lineage originates from recently feralized livestock and found supporting evidence for increasedG. gallusdensity on Kauai within the last few decades.SNPs obtained from whole‐genome sequencing were consistent with historic admixture between Kauai's divergent(G. gallus)lineages. Additionally, analyses of plumage, skin colour and vocalizations revealed that Kauai birds' behaviours and morphologies overlap with those of domestic chickens and Red Junglefowl, suggesting hybrid origins. Together, our data support the hypotheses that (i) Kauai's feralG. gallusdescend from recent invasion(s) of domestic chickens into an ancient Red Junglefowl reservoir and (ii) feral chickens exhibit greater phenotypic diversity than candidate source populations. These findings complicate management objectives for Pacific feral chickens, while highlighting the potential of this and other feral systems for evolutionary studies of invasions.

     
    more » « less
  2. Abstract

    Climate change is expected to increase weather extremes and variability, including more frequent weather whiplashes or extreme swings between severe drought and extraordinarily wet years. Shifts in precipitation patterns will alter stream flow regimes, affecting critical life history stages of sensitive aquatic organisms. Understanding how threatened fish species, such as steelhead/rainbow trout (Oncorhynchus mykiss), are affected by stream flows in years with contrasting environmental conditions is important for their conservation. Here, we report how extreme wet and dry years, from 2015 to 2018, affected stream flow patterns in two tributaries to the South Fork Eel River, California,USA, and aspects ofO. mykissecology, including over‐summer fish growth and body condition as well as spring out‐migration timing. We found that stream flow patterns differed across years in the timing and magnitude of large winter–spring flow events and in summer low‐flow levels. We were surprised to find that differences in stream flows did not impact growth, body condition, or timing of out‐migration ofO. mykiss. Fish growth was limited in the late summer in these streams (average of 0.02 ± 0.05 mm/d), but was similar across dry and wet years, and so was end‐of‐summer body condition and pool‐specific biomass loss from the beginning to the end of the summer. Similarly,O. mykissmigrated out of tributaries during the last week of March/first week of April regardless of the timing of spring flow events. We suggest that the muted response to inter‐annual hydrologic variability is due to the high quality of habitat provided by these unimpaired, groundwater‐fed tributaries. Similar streams that are likely to maintain cool temperatures and sufficient base flows, even in the driest years, should be a high priority for conservation and restoration efforts.

     
    more » « less
  3. Abstract

    Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics inESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real‐world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first‐generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter‐disciplinary communication.

     
    more » « less
  4. Abstract

    Hybrid zones provide unique opportunities to examine reproductive isolation and introgression in nature. We utilized 45,384 single nucleotide polymorphism (SNP) loci to perform association mapping of 14 floral, vegetative and ecological traits that differ betweenIris hexagonaandIris fulva,and to investigate, using a Bayesian genomic cline (BGC) framework, patterns of genomic introgression in a large and phenotypically diverse hybrid zone in southern Louisiana. Many loci of small effect size were consistently found to be associated with phenotypic variation across all traits, and several individual loci were revealed to influence phenotypic variation across multiple traits. Patterns of genomic introgression were quite heterogeneous throughout the Louisiana Iris genome, withI. hexagonaalleles tending to be favoured over those ofI. fulva. Loci that were found to have exceptional patterns of introgression were also found to be significantly associated with phenotypic variation in a small number of morphological traits. However, this was the exception rather than the rule, as most loci that were associated with morphological trait variation were not significantly associated with excess ancestry. These findings provide insights into the complexity of the genomic architecture of phenotypic differences and are a first step towards identifying loci that are associated with both trait variation and reproductive isolation in nature.

     
    more » « less
  5. Abstract

    In humans, socioeconomic status (SES) has profound outcomes on socio‐emotional development and health. However, while much is known about theconsequencesofSES, little research has examined thepredictorsofSESdue to the longitudinal nature of such studies. We sought to explore whether interindividual differences in neonatal sociality, temperament, and early social experiences predicted juvenile social status in rhesus monkeys (Macaca mulatta), as a proxy forSESin humans. We performed neonatal imitation tests in infants’ first week of life and emotional reactivity assessments at 2 and 4 weeks of age. We examined whether these traits, as well as the rearing environment in the first 8 months of life (with the mother or with same‐aged peers only) and maternal social status predicted juvenile (2–3 years old) social status following the formation of peer social groups at 8 months. We found that infants who exhibited higher rates of neonatal imitation and newborn emotional reactivity achieved higher social status as juveniles, as did infants who were reared with their mothers, compared to infants reared with peers. Maternal social status was only associated with juvenile status for infant dyads reared in the same maternal group, indicating that relative social relationships were transferred through social experience. These results suggest that neonatal imitation and emotional reactivity may reflect ingrained predispositions toward sociality that predict later outcomes, and that nonnormative social experiences can alter socio‐developmental trajectories. Our results indicate that neonatal characteristics and early social experiences predict later social outcomes in adolescence, including gradients of social stratification.

     
    more » « less