skip to main content

Title: Correlates of Native American engineering students’ career interests and efficacy: A test of SCCT
There is an urgent need for young people to prepare for and pursue engineering careers. Engineering occupations comprise 20% of the science, technology, engineering, and math (STEM) jobs in the U.S. (Bureau of Labor Statistics, 2017). The average wage for STEM occupations is nearly double that of non-STEM occupations, with engineers commanding some of the highest salaries in STEM (Bureau of Labor Statistics, 2017). Moreover, engineering occupations are expected to be some of the fastest growing occupations in the U.S. over the next 10 years (Occupational Outlook Handbook, 2018); yet, there are current and projected shortages of workers in the engineering workforce so that many engineering jobs will go unfilled (Bureau of Labor Statistics, 2015) Native Americans are highly underrepresented in engineering (NSF, 2017). They comprise approximately 2% of the U.S. population (U.S. Census Bureau, 2013), but only 0.3% of engineers (Sandia National Laboratories, 2016). Thus, they are not positioned to attain a high-demand, high-growth, highly rewarding engineering job, nor to provide engineering expertise to meet the needs of their own communities or society at large. The purpose of this study was to examine factors that encourage or discourage Native American college students’ entry into engineering. Using Social Cognitive Career more » Theory (SCCT; Lent, Brown, & Hackett, 1994; 2000), we examined the correlates of these students’ interests and efficacy in engineering to accomplish this goal. Participants were N = 30 Native American engineering college students from the Midwest; 65% men, 30% women, and 4% other. The mean age was 25.87 (SD = 6.98). Data were collected over the period of one year on college campuses and at professional development conferences via an online survey hosted on Qualtrics. Three scales were used in the study: Mapping Vocational Challenges – Engineering (Lapan & Turner, 2000, 2016), the Perceptions of Barriers Scale (POB; McWhirter, 1998), and the Structured Career Development Inventory (Lapan & Turner, 2004). An a priori Power Analysis (f2 = .50; α = .05, 1 – β = .90) indicated our sample size was adequate. For all scales, full-scale Cronbach’s α reliabilities ranged from .82 to .86. Results of correlation analyses indicated that engineering efficacy was negatively related to lack of academic preparation (r = -.50, p = .016), and perceived lack of ability (r = -.53, p = .009), and positively related to academic achievement (r = .43, p = .043), career exploration (r = .47, p = .022), and approaching engineering studies proactively (r = .53, p = .009). Engineering interests were negatively related to perceived lack of ability (r = -.55, p = .007), and positively to proactivity (r = .42, p = .044), and academic achievement (r = .45, p = .033). Engineering interests were also related to support from parents, teachers, and friends to study engineering and pursue an engineering career. There was no significant relationship between engineering interests and engineering efficacy among these students. The relevance of these results will be discussed in light of SCCT, and recommendations for practice will be included. « less
Authors:
; ; ; ; ;
Award ID(s):
1743329
Publication Date:
NSF-PAR ID:
10110962
Journal Name:
American Psychological Association 127th Annual Convention
Sponsoring Org:
National Science Foundation
More Like this
  1. There is little research or understanding of curricular differences between two- and four-year programs, career development of engineering technology (ET) students, and professional preparation for ET early career professionals [1]. Yet, ET credentials (including certificates, two-, and four-year degrees) represent over half of all engineering credentials awarded in the U.S [2]. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. This research study focuses on how career orientations affect engineering formation of ET students educated at two-year colleges. The theoretical framework guiding this study is Social Cognitive Career Theory (SCCT). SCCT is a theory which situates attitudes, interests, and experiences and links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes [3]. Student knowledge of attitudes toward and motivation to pursue STEM and engineering education can impact academic performance and indicate future career interest and participation in the STEM workforce [4]. This knowledge may be measured through career orientations or career anchors. A career anchor is a combination of self-concept characteristics which includes talents, skills, abilities, motives, needs, attitudes, and values. Career anchors can develop over time and aid in shaping personal and career identity [6].more »The purpose of this quantitative research study is to identify dimensions of career orientations and anchors at various educational stages to map to ET career pathways. The research question this study aims to answer is: For students educated in two-year college ET programs, how do the different dimensions of career orientations, at various phases of professional preparation, impact experiences and development of professional profiles and pathways? The participants (n=308) in this study represent three different groups: (1) students in engineering technology related programs from a medium rural-serving technical college (n=136), (2) students in engineering technology related programs from a large urban-serving technical college (n=52), and (3) engineering students at a medium Research 1 university who have transferred from a two-year college (n=120). All participants completed Schein’s Career Anchor Inventory [5]. This instrument contains 40 six-point Likert-scale items with eight subscales which correlate to the eight different career anchors. Additional demographic questions were also included. The data analysis includes graphical displays for data visualization and exploration, descriptive statistics for summarizing trends in the sample data, and then inferential statistics for determining statistical significance. This analysis examines career anchor results across groups by institution, major, demographics, types of educational experiences, types of work experiences, and career influences. This cross-group analysis aids in the development of profiles of values, talents, abilities, and motives to support customized career development tailored specifically for ET students. These findings contribute research to a gap in ET and two-year college engineering education research. Practical implications include use of findings to create career pathways mapped to career anchors, integration of career development tools into two-year college curricula and programs, greater support for career counselors, and creation of alternate and more diverse pathways into engineering. Words: 489 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] The Integrated Postsecondary Education Data System, (IPEDS). (2014). Data on engineering technology degrees. [3] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [4] Unfried, A., Faber, M., Stanhope, D.S., Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineeirng, and math (S-STEM). Journal of Psychoeducational Assessment, 33(7), 622-639. [5] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [6] Schein, E.H., & Van Maanen, J. (2013). Career Anchors, 4th ed. San Francisco: Wiley.« less
  2. Recent reports indicate that there are less than 1900 (0.6%) Native American undergraduate and graduate engineering students nationwide (Yoder, 2016). Although Native Americans are underrepresented in the field of engineering, there is very little research that explores the contributing factors. The purpose of our exploratory research is to identify the barriers, supports, and personal strengths that Native American engineering students identify as being influential in developing their career interests and aspirations in engineering. Informed by research in Social Cognitive Career Theory (SCCT; Lent, Brown, & Hackett, 1994, 2000), we conducted an online survey to assess the motivational variables that guide the career thinking and advancement of students preparing to enter the field of engineering. Instrumentation included Mapping Vocational Challenges (Lapan & Turner, 2000, 2009, 2014), Perceptions of Barriers (McWhirter, 1997), the Structured Career Development Inventory (Lapan & Turner, 2006; Turner et al., 2006), the Career-Related Parent Support Scale (Turner, Alliman-Brissett, Lapan, Udipi, & Ergun, 2003), and the Assessment of Campus Climate for Underrepresented Groups (Rankin, 2001), which were used to measure interests, goals, personal strengths and internal and external barriers and supports. Participants (N=23) consisted of graduate (≈25%) and undergraduate (≈75%) Native American engineering students. Their survey responses indicated thatmore »students were highly interested in, and had strong self-efficacy for, outcome expectations for, and persistence for pursuing their engineering careers. Their most challenging barriers were financial (e.g., having expenses that are greater than income, and having to work while going to school just to make ends meet) and academic barriers (e.g., not sufficiently prepared academically to study engineering). Perceptions of not fitting in and a lack of career information were also identified as moderately challenging barriers. Students endorsed a number of personal strengths, with the strongest being confidence in their own communication and collaboration skills, as well as commitment to their academic and career preparation. The most notable external support to their engineering career development was their parents’ encouragement to make good grades and to go to a school where they could prepare for a STEM career. Students overall found that their engineering program climates (i.e., interactions with students, faculty, staff, and program expectations of how individuals treat each other) were cooperative, friendly, equitable, and respectful. Study results are interpreted in light of SCCT and recommendations for future research and practice in engineering education are provided.« less
  3. Recent reports indicate that there are less than 1900 (0.6%) Native American undergraduate and graduate engineering students nationwide (Yoder, 2016). Although Native Americans are underrepresented in the field of engineering, there is very little research that explores contributing factors. The purpose of our exploratory research is to identify those barriers, supports, and personal strengths that Native American engineering students identify as being influential in developing their career interests and aspirations in engineering. Informed by research in Social Cognitive Career Theory (SCCT), we developed an on-line survey to assess the motivational variables that guide the career thinking and advancement of students preparing to enter the field of engineering. Instrumentation included Mapping Vocational Challenges (Lapan & Turner, 2000, 2009, 2014), Perceptions of Barriers (McWhirter, 1997), the Structured Career Development Inventory (Lapan & Turner, 2006), and the Career-Related Parent Support Scale (Turner et al., 2003), which were used to measure interests, goals, personal strengths and external supports. Participants (N=23) consisted of graduate (≈25%) and undergraduate (≈75%) Native American engineering students. Their responses indicated that their most challenging barriers were financial (e.g., having expenses that are greater than income, and having to work while going to school just to make ends meet), and academicmore »barriers (e.g., not sufficiently prepared academically to study engineering). A lack of career information, and perceptions of not fitting in were also identified as moderately challenging barriers. Students endorsed a number of personal strengths, with the strongest being confidence in their own communication and collaboration skills, and commitment to their academic and career preparation. The most notable external support to their engineering career development was their parents’ encouragement to make good grades and to go to a school where they could prepare for a STEM career. Study results will be interpreted in light of theory, and recommendations for future research and practice will be provided.« less
  4. This study examines the relationship between participation in extracurricular college activities and its possible impact on students’ career interests in entrepreneurship and innovation. This work draws from the Engineering Majors Survey (EMS), focusing on innovation self-efficacy and how it may be impacted by participation in various extracurricular college activities. The term self-efficacy as developed by Albert Bandura is defined as “people’s judgment of their capabilities to organize and execute courses of action required to attain designated types of performances” (Bandura, 1986, p.391). Innovation self-efficacy is a variable consisting of six items that correspond to Dyer’s five discovery skills seen as important for innovative behavior. In order to investigate the relationship between participation in certain activities and innovation self-efficacy, the 20 activities identified in the EMS survey were grouped thematically according to their relevance to entrepreneurship-related topics. Students were divided into two groups using K-means cluster analysis according to their innovation selfefficacy (ISE.6) score. Cluster one (C1) contained the students with higher ISE.6 scores, Cluster two (C2) included the students with lower innovation self-efficacy scores. This preliminary research focused on descriptive analyses while also looking at different background characteristics such as gender, academic status and underrepresented minority status (URM). The resultsmore »show that students in C1 (high ISE.6) have significantly greater interest in starting an organization (78.1%) in comparison to C2 students (21.9%) (X²=81.11, p=.000, Cramer’s V= .124). At the same time, male students reported significantly higher ISE.6 scores (M=66.70, SD=17.53) than female students (M=66.70, SD=17.53) t(5192)=-5.220 p=.000 and stronger intentions to start an organization than female students (15% and 6.1 % respectively). Cluster affiliation representing innovation self-efficacy as well as gender seems to play a role when looking at career interest in entrepreneurship. According to Social Cognitive Career Theory, self-efficacy is influenced by learning experiences. In this work activities referring to hands-on activities in entrepreneurship and innovation are highly correlated with ISE.6 (r=.206, p=.000), followed by non-hands-on exposure to entrepreneurship and innovation. At the same time, students in C1 participated almost twice as often in hands-on activities in entrepreneurship and innovation (28.6%) as compared to students in C2 (15.2%). Interestingly in C1, there were no gender differences in participation in hands-on activities in entrepreneurship and innovation. Overall, female students (M=4.66, SD=2.5) participated in significantly more activities than male students (M=3.9, SD=2.64), t(5192)=9.65 p=.000. All in all, these results reveal interesting insights into the potential benefits of taking part in innovation and entrepreneurship-related activities and their impact on students’ innovation self-efficacy and interests in corresponding careers.« less
  5. As high school programs are increasingly incorporating engineering content into their curricula, a question is raised as to the impacts of those programs on student attitudes towards engineering, in particular engineering design. From a collegiate perspective, there is a related question as to how first-year engineering programs at the college level should adapt to a greater percentage of incoming students with prior conceptions about engineering design and how to efficaciously uncover what those conceptions may be. Further, there is a broader question within engineering design as to how various design experiences, especially introductory experiences, may influence student attitudes towards the subject and towards engineering more broadly. Student attitudes is a broad and well-studied area and a wide array of instruments have been shown to be valid and reliable assessments of various aspects of student motivation, self-efficacy, and interests. In terms of career interests, the STEM Career Interest Survey (STEM-CIS) has been widely used in grade school settings to gauge student intentions to pursue STEM careers, with a subscale focused on engineering. In self-efficacy and motivation, the Value-Expectancy STEM Assessment Scale (VESAS) is a STEM-focused adaptation of the broader Values, Interest, and Expectations Scale (VIES), which in turns builds upon Eccles’more »Value-Expectancy model of self-efficacy. When it comes to engineering design, there have been a few attempts to develop more focused instruments, such as Carberry’s Design Self-Efficacy Instrument. For the purposes of this work, evaluating novice and beginning designer attitudes about engineering design, the available instruments were not found to assess the desired attributes. Design-focused instruments such as Carberry’s were too narrowly focused on the stages of the design process, many of which required a certain a priori knowledge to effectively evaluate. Broader instruments such as the VESAS were too focused on working and studying engineering, rather than doing or identifying with engineering. A new instrument, the Engineering Design Value-Expectancy Scale (EDVES) was developed to meet this need. In its current form the EDVES includes 38 items across several subscales covering expectancy of success in, perceived value of, and identification with engineering and design. This work presents the EDVES and discusses the development process of the instrument. It presents validity evidence following the Cook validation evidence model, including scoring, generalization, and extrapolation validity evidence. This validation study was conducted using pre- and post-course deployment with 192 first-year engineering students enrolled in a foundational engineering design course.« less