skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Education innovation to meet Sustainable Development Goals (SDGs)
Meeting the UN Sustainable Development Goals (SDGs) requires innovations in education to build key competencies in all learners. Learning objectives for SDGs identified by UNESCO like the “Integrated problem-solving competency,” if integrated properly with high school curriculum, can contribute sustainable development solutions for Belize. Additionally, the 3rd international conference of SIDS http://www.sids2014.org) under the theme, “The sustainable development of small island developing states through genuine and durable partnerships,” stressed investment in education and training, including through partnerships with migrants and diaspora communities, with “concrete, focused, forward-looking and action oriented programmes.” The Sagicor Visionaries Challenge, a sustainability challenge launched by the Caribbean Examinations Council (CXC), the Caribbean Science Foundation, and the Ministries of Education across 12 Caribbean countries in 2012, represented an example of such a partnership that fostered many key competencies now needed for meeting the SDGs. It asked secondary school students in the Caribbean to identify a challenge facing their school and or community, propose a sustainable and innovative solution, and show how that solution uses Science Technology Engineering and Mathematics (STEM) as well as got the support of the school community. For its inaugural year, teacher and student sensitization workshops were organized in each country. Teachers supervised the student projects with support from mentors who were either local or virtual, including many members of the Caribbean diaspora. 175 projects entered the competition, representing 900 students ranging in age from 11 to 19. Experience from the inaugural year, which saw Belize’s Bishop Martin Secondary emerge the regional challenge winner, demonstrated interest by young people of the Caribbean in many of the themes listed in the SIDS outcomes like climate change, sustainable energy, disaster risk reduction, sustainable oceans and seas, food security and nutrition, water and sanitation, sustainable transportation, sustainable consumption and production, and health and non-communicable diseases. Reflection on student projects from Belize from the 2013 challenge, as well as current examples of teacher led inquiry-based projects for CXC’s School Based Assessments (SBAs), offer multiple opportunities for ensuring reef to ridge sustainable development in Belize and the rest of the Caribbean.  more » « less
Award ID(s):
1735320 1243510
PAR ID:
10111355
Author(s) / Creator(s):
Date Published:
Journal Name:
12 th Natural Resource Management & Research Symposium “BELIZE, ‘THROUGH THE BOTTLENECK’”
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Growing complexity and magnitude of the challenges facing humanity require new ways of understanding and operationalizing solutions for more healthy, sustainable, secure, and joyful living. Developed almost contemporaneously but separately, the National Academy of Engineering's 14 Grand Challenges (GCs) and United Nation’s 17 Sustainable Development Goals (GCs) describe and call for solutions to these challenges. During the 2017 meetings for the UNESCO Kick-off for Engineering Report II in Beijing, the Global Grand Challenges Summit in Washington, DC, and the World Engineering Education Forum (WEEF) in Malaysia, we expanded our work to include international perspectives on ways that the GCs and SDGs could be more strongly connected. Within this context we ask, "How can educators integrate best practices to nurture and support development of globally competent students who will reach the goals as the Engineers of 2020?" and "How can connectivity and alignment of curricula to the GCs and SDGs foster students’ development?" Conclusions from the UNESCO’s meeting were that educators and stakeholders still have much to do with respect to sharing the 17 SDGs with engineering audiences around the world. This conclusion was reiterated at WEEF when an informal poll among participants from around the world revealed that knowledge of both the GCs and the SDGs was not as wide-spread as we had initially assumed. There were several engineering educators who were learning about both of these constructs for the very first time. This led to concerns posed by students participating in the Malaysia conference as part of the Student Platform for Engineering Education Development (World SPEED). The student teams from India, Colombia, Brazil, and Korea acknowledged potential disadvantages associated with learning in the environments created by educators unequipped with knowledge of topics covered by the GCs, and the SDGs. The students were further concerned that their faculty and mentors would not be able to create educational environments that allow for development of intentional learning and conscientious projects associated the GCs and SDGs. The report here will discuss ways that the GCs and SDGs are driving international conversations about engineering curricula, diversity and inclusion, and partnerships for the goals. 
    more » « less
  2. The United Nations Sustainable Development Goals (UN SDGs) are the focus for a Research Experience for Teachers (RET) Site in Engineering at X University. The relevant and meaningful contexts of the SDGs allow middle and high school teachers and their students to easily make connections between research in a university lab setting to Science, Technology, Engineering, and Math (STEM) concepts in their classroom. Lesson plans inspired by the UN SDGs research experience were developed as an “integrated STEM” problem solving activity by each of the RET teachers. Ten (10) teachers comprising of both pre-service and in-service middle or high school teachers have participated in each cohort over the two years of the NSF RET grant thus far. Six weeks of authentic summer research takes place in 5 different faculty labs at X University under the mentorship of faculty and their graduate students or postdoc. Examples of the research projects include “Photocatalysis for Clean Energy and Environment,” “Genetically Engineering Plasmid DNA molecules to address Tuberculosis Antibiotic Resistance,” and “New Water-Based Technology for Plastic Recycling.” RET participants also attend a weekly coffee session to help guide the teachers through the research process and a weekly ½-day professional development (PD) session to translate the research experience into a classroom lesson plan that aligns to state standards, as well as evidence-backed curriculum design and teaching strategies. Teacher cohort building and community is fostered through group lunches and additional activities (e.g., coordinated lab visits, behind the scenes tour of a local science museum, and industry panel). For evaluation of the RET program, pre/post-surveys measured the teacher’s self-reported ability, confidence, understanding, and frequency of use of the Engineering Design Process (EDP), Integrated STEM, and the UN Sustainable Development Goals. Formative assessment was conducted throughout the summer on various aspects of the RET through surveys and regular check-ins with the teachers. At the end of the summer, focus groups were conducted by an external evaluator for both the teacher participants and the research mentors. Both teachers and mentors declared the program was well planned and executed. The teachers developed close bonds and connections, learned a lot from each other, had meaningful research experiences, and developed a sense of community. The research mentors reported that the teachers provided useful research contributions, were enthusiastic about the research, had genuine lab experiences, developed professional skills, and built good community connections. Areas for improvement included clear expectations for everyone, reducing steep learning curves, and consistency of mentoring across the labs. The RET program continues into the academic year with occasional meetings to report on the implementation of their research-inspired lesson plan in their classroom. The RET participants share that they are bringing in the “real world” relevance to their students with an integrated STEM lens (e.g., climate change and UN SDGs) and that they refer back to their own lab experiences (e.g., importance of measuring chemicals accurately). The research experience has made several positive impacts on the teacher participants that also benefit their students. 
    more » « less
  3. Abstract The Sustainable Development Goals (SDGs) adopted by the United Nations in 2015 constitute a set of 17 global goals established as a blueprint for achieving a more sustainable and equitable world for humanity. As part of the SDGs, target 14.3 is focuses on minimizing and addressing the impacts of Ocean Acidification (OA). We argue that moving forward in meeting the targets related to pH levels in the coastal ocean can be facilitated through accounting for various drivers of pH change, which are associated with advancing a suite of SDG goals. Addressing ‘coastal acidification’ via a suite of linked SDGs may help avoid inaction through connecting global phenomena with local impacts and drivers. This in turn can provide opportunities for designing novel place-based actions or partnerships that can aid and provide synergies for the joint implementation of programs and policies that tackle a suite of SDGs and the specific targets related to coastal ocean pH. 
    more » « less
  4. Lamberg, T. (Ed.)
    This paper focuses on the trajectories of two mathematics teachers in developing Political Conocimiento through one year of Professional Development (PD) on culturally responsive mathematics teaching. The PD was organized around teacher and student noticing, positionality, community partnerships and action research. The study found that the teachers’ discourse practices shifted from whiteness pedagogies towards politicized notions of schooling, caring, and mathematics learning. The paper discusses the dominant ideologies that teachers reproduced in their discourses around mathematics education and interactions with students. It also illustrates the teachers’ trajectories of Political Conocimiento through the deconstruction of the role that race plays in their positionalities, their classrooms, and school. 
    more » « less
  5. null (Ed.)
    Knowledge of genomics is an essential component of science for high school student health literacy. However, few high school teachers have received genomics training or any guidance on how to teach the subject to their students. This project explored the impact of a genomics and bioinformatics research pipeline for high school teachers and students using an introduction to genome annotation research as the catalyst. The Western New York-based project had three major components: (1) a summer teacher professional development workshop to introduce genome annotation research, (2) teacher-guided student genome annotation group projects during the school year, (3) with an end of the academic year capstone symposium to showcase student work in a poster session. Both teachers and students performed manual gene annotations using an online annotation toolkit known as Genomics Education National Initiative-Annotation Collaboration Toolkit (GENI-ACT), originally developed for use in a college undergraduate teaching environment. During the school year, students were asked to evaluate the data they had collected, formulate a hypothesis about the correctness of the computer pipeline annotation, and present the data to support their conclusions in poster form at the symposium. Evaluation of the project documented increased content knowledge in basic genomics and bioinformatics as well as increased confidence in using tools and the scientific process using GENI-ACT, thus demonstrating that high school students are capable of using the same tools as scientists to conduct a real-world research task. 
    more » « less