skip to main content

Title: Middle to Late Paleocene Leguminosae fruits and leaves from Colombia
Leguminosae are one of the most diverse flowering-plant groups today, but the evolutionary history of the family remains obscure because of the scarce early fossil record, particularly from lowland tropics. Here, we report ~500 compression or impression specimens with distinctive legume features collected from the Cerrejón and Bogotá Formations, Middle to Late Paleocene of Colombia. The specimens were segregated into eight fruit and six leaf morphotypes. Two bipinnate leaf morphotypes are confidently placed in the Caesalpinioideae and are the earliest record of this subfamily. Two of the fruit morphotypes are placed in the Detarioideae and Dialioideae. All other fruit and leaf morphotypes show similarities with more than one subfamily or their affinities remain uncertain. The abundant fossil fruits and leaves described here show that Leguminosae was the most important component of the earliest rainforests in northern South America c. 60–58 million years ago.
Authors:
; ; ;
Award ID(s):
1829299
Publication Date:
NSF-PAR ID:
10111380
Journal Name:
Australian systematic botany
ISSN:
1446-5701
Sponsoring Org:
National Science Foundation
More Like this
  1. Leguminosae are one of the most diverse flowering-plant groups today, but the evolutionary history of the family remains obscure because of the scarce early fossil record, particularly from lowland tropics. Here, we report ~500 compression or impression specimens with distinctive legume features collected from the Cerrejón and Bogotá Formations, Middle to Late Paleocene of Colombia. The specimens were segregated into eight fruit and six leaf morphotypes. Two bipinnate leaf morphotypes are confidently placed in the Caesalpinioideae and are the earliest record of this subfamily. Two of the fruit morphotypes are placed in the Detarioideae and Dialioideae. All other fruit and leaf morphotypes show similarities with more than one subfamily or their affinities remain uncertain. The abundant fossil fruits and leaves described here show that Leguminosae was the most important component of the earliest rainforests in northern South America c. 60–58 million years ago.
  2. The Malay Archipelago is one of the most biodiverse regions on Earth, but it suffers high extinction risks due to severe anthropogenic pressures. Paleobotanical knowledge provides baselines for the conservation of living analogs and improved understanding of vegetation, biogeography, and paleoenvironments through time. The Malesian bioregion is well studied palynologically, but there have been very few investigations of Cenozoic paleobotany (plant macrofossils) in a century or more. We report the first paleobotanical survey of Brunei Darussalam, a sultanate on the north coast of Borneo that still preserves the majority of its extraordinarily diverse, old-growth tropical rainforests. We discovered abundant compression floras dominated by angiosperm leaves at two sites of probable Pliocene age: Berakas Beach, in the Liang Formation, and Kampong Lugu, in an undescribed stratigraphic unit. Both sites also yielded rich palynofloral assemblages from the macrofossil-bearing beds, indicating lowland fern-dominated swamp (Berakas Beach) and mangrove swamp (Kampong Lugu) depositional environments. Fern spores from at least nine families dominate both palynological assemblages, along with abundant fungal and freshwater algal remains, rare marine microplankton, at least four mangrove genera, and a diverse rainforest tree and liana contribution (at least 19 families) with scarce pollen of Dipterocarpaceae, today’s dominant regional life form. Compressedmore »leaves and rare reproductive material represent influx to the depocenters from the adjacent coastal rainforests. Although only about 40% of specimens preserve informative details, we can distinguish 23 leaf and two reproductive morphotypes among the two sites. Dipterocarps are by far the most abundant group in both compression assemblages, providing rare, localized evidence for dipterocarp-dominated lowland rainforests in the Malay Archipelago before the Pleistocene. The dipterocarp fossils include winged Shorea fruits, at least two species of plicate Dipterocarpus leaves, and very common Dryobalanops leaves. We attribute additional leaf taxa to Rhamnaceae ( Ziziphus ), Melastomataceae, and Araceae ( Rhaphidophora ), all rare or new fossil records for the region. The dipterocarp leaf dominance contrasts sharply with the family’s <1% representation in the palynofloras from the same strata. This result directly demonstrates that dipterocarp pollen is prone to strong taphonomic filtering and underscores the importance of macrofossils for quantifying the timing of the dipterocarps’ rise to dominance in the region. Our work shows that complex coastal rainforests dominated by dipterocarps, adjacent to swamps and mangroves and otherwise similar to modern ecosystems, have existed in Borneo for at least 4–5 million years. Our findings add historical impetus for the conservation of these gravely imperiled and extremely biodiverse ecosystems.« less
  3. Extant Mammalia are the only living representatives of the larger clade known as Synapsida, which has a continuous fossil record from around 320 million years ago to today. Despite the fact that much of the ecological diversity of mammals has been considered in light of limb morphology, the deep time origin of synapsid limb diversity and its influence on ecological diversity has received less attention. Here, we present shape analyses focusing on the forelimbs of the two earliest synapsid radiations (“pelycosaurs”, and pre-mammaliaforme Therapsida) in comparison to a broad sample of extant Mammalia. Using an expansive geometric morphometric data set, comprised of 384 fossil specimens and 148 extant mammalian specimens, we sought evidence for ecomorphological signals that could provide insight on the ecology of the earliest synapsids. Collecting shape data of humeral and ulnar elements from an extant sample representing multiple known eco morphologies provided the framework for a comparative exploration of extinct ecomorphologies, associated specifically with locomotion. Our results show that distal humeral shape is not informative of broad locomotor ecomorphologies in early fossil Synapsida. In contrast, proximal humeral shape shows a more complex pattern that suggests shape similarity between basal synapsids and members of extant Perissodactyla, and certainmore »highly derived fully fossorial mammals, as just two examples. Overall, however, our findings suggest general shape analyses may have limited utility when analyzing for ecological-signal across deep time. Considering skeletal morphology in a holistic framework that considers unique combinations of shapes, as well as the use of biomechanically focused indices (such are functional proportions), may help to elucidate the more nuanced ways that locomotor ecology influenced limb shape in some of the earliest amniote radiations.« less
  4. Hyaenodonta is a diverse, extinct group of carnivorous mammals that included weasel- to rhinoceros-sized species. The oldest-known hyaenodont fossils are from the middle Paleocene of North Africa and the antiquity of the group in Afro-Arabia led to the hypothesis that it originated there and dispersed to Asia, Europe, and North America. Here we describe two new hyaenodont species based on the oldest hyaenodont cranial specimens known from Afro-Arabia. The material was collected from the latest Eocene Locality 41 (L-41, ∼34 Ma) in the Fayum Depression, Egypt.Akhnatenavus nefertiticyonsp. nov. has specialized, hypercarnivorous molars and an elongate cranial vault. InA. nefertiticyonthe tallest, piercing cusp on M1–M2is the paracone.Brychotherium ephalmosgen. et sp. nov. has more generalized molars that retain the metacone and complex talonids. InB. ephalmosthe tallest, piercing cusp on M1–M2is the metacone. We incorporate this new material into a series of phylogenetic analyses using a character-taxon matrix that includes novel dental, cranial, and postcranial characters, and samples extensively from the global record of the group. The phylogenetic analysis includes the first application of Bayesian methods to hyaenodont relationships.B. ephalmosis consistently placed within Teratodontinae, an Afro-Arabian clade with several generalist and hypercarnivorous forms, andAkhnatenavusis consistently recovered in Hyainailourinae as part of an Afro-Arabianmore »radiation. The phylogenetic results suggest that hypercarnivory evolved independently three times within Hyaenodonta: in Teratodontinae, in Hyainailourinae, and in Hyaenodontinae. Teratodontines are consistently placed in a close relationship with Hyainailouridae (Hyainailourinae + Apterodontinae) to the exclusion of “proviverrines,” hyaenodontines, and several North American clades, and we propose that the superfamily Hyainailouroidea be used to describe this relationship. Using the topologies recovered from each phylogenetic method, we reconstructed the biogeographic history of Hyaenodonta using parsimony optimization (PO), likelihood optimization (LO), and Bayesian Binary Markov chain Monte Carlo (MCMC) to examine support for the Afro-Arabian origin of Hyaenodonta. Across all analyses, we found that Hyaenodonta most likely originated in Europe, rather than Afro-Arabia. The clade is estimated by tip-dating analysis to have undergone a rapid radiation in the Late Cretaceous and Paleocene; a radiation currently not documented by fossil evidence. During the Paleocene, lineages are reconstructed as dispersing to Asia, Afro-Arabia, and North America. The place of origin of Hyainailouroidea is likely Afro-Arabia according to the Bayesian topologies but it is ambiguous using parsimony. All topologies support the constituent clades–Hyainailourinae, Apterodontinae, and Teratodontinae–as Afro-Arabian and tip-dating estimates that each clade is established in Afro-Arabia by the middle Eocene.

    « less
  5. Abstract The fossil record of Marsilea is challenging to assess, due in part to unreliable reports and conflicting opinions regarding the proper application of the names Marsilea and Marsileaceaephyllum to fossil leaves and leaflets similar to those of modern Marsilea . Specimens examined for this study include material assigned to Marsileaceaephyllum johnhallii , purportedly the oldest fossil record of a Marsilea -like sporophyte from the Lower Cretaceous of the Dakota Formation, Kansas, U.S.A.; leaves and leaf whorls of the extinct aquatic angiosperm Fortuna from several Late Cretaceous and Paleocene localities in western North America; and leaves and leaflets resembling Marsilea from the Eocene Green River Formation, Colorado and Utah, U.S.A. Literature on the fossil record of Marsilea was also reviewed. As a result, several taxonomic changes are proposed. Marsileaceaephyllum johnhallii is reinterpreted as an aquatic angiosperm that shares some architectural features with the genus Fortuna , although Marsileaceaephyllum is here maintained as a distinct genus with an emended diagnosis; under this reinterpretation, the name Marsileaceaephyllum can no longer be applied to sporophyte organs with affinities to Marsileaceae. Three valid fossil Marsilea species are recognized on the basis of sporophyte material that includes characteristic quadrifoliolate leaves and reticulate-veined leaflets: Marsilea campanicamore »(J. Kvaček & Herman) Hermsen, comb. nov., from the Upper Cretaceous Grünbach Formation, Austria; Marsilea mascogos Estrada-Ruiz et al., from the Upper Cretaceous Olmos Formation, Mexico; and Marsilea sprungerorum Hermsen, sp. nov., from the Eocene Green River Formation, U.S.A. The species are distinguished from one another based on leaflet dimensions. Leaves from the Eocene Wasatch Formation, U.S.A., are transferred from Marsileaceaephyllum back to Marsilea , although not assigned to a fossil species. Finally, an occurrence of Marsilea from the Oligocene of Ethiopia is reassigned to Salvinia . A critical evaluation of the fossil record of Marsilea thus indicates that (1) the oldest fossil marsileaceous sporophytes bearing Marsilea -like leaves are from the Campanian; (2) only four credible records of sporophyte material attributable to Marsilea are known; and (3) the oldest dispersed Marsilea spores are known from the Oligocene.« less