skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Canopy Structure in Late Cretaceous and Paleocene Forests as Reconstructed from Carbon Isotope Analyses of Fossil Leaves
While modern forests have their origin in the diversification and expansion of angiosperms in the late Cretaceous and early Cenozoic, it is unclear if the rise of closed-canopy tropical rainforests preceded or followed the end-Cretaceous extinction. The “canopy effect” is a strong vertical gradients in the carbon isotope (δ13C) composition of leaves in modern closed-canopy forests that could serve as a proxy signature for canopy structure in ancient forests. To test this, we report measurements of the carbon isotope composition of nearly 200 fossil angiosperm leaves from two localities in the Paleocene Cerrejón Formation and one locality in the Maastrichtian Guaduas Formation. Leaves from one Cerrejón fossil assemblage deposited in a small fluvial channel exhibited a 6.3‰ range in δ13C, consistent with a closed-canopy forest. Carbon isotope values from lacustrine sediments in the Cerrejón Fm. had a range of 3.3‰, consistent with vegetation along a lake edge. An even narrower range of δ13C values (2.7‰) was observed for a leaf assemblage recovered from the Cretaceous Guaduas Fm., and suggests vegetation with an open canopy structure. Carbon isotope fractionation by late Cretaceous and early Paleogene leaves was in all cases similar to modern relatives, consistent with estimates of low atmospheric CO2 during this time period. This study confirms other lines of evidence suggesting closed-canopy forests in tropical South America existed by the late Paleocene, and fails to find isotopic evidence for a closed-canopy forest in the Cretaceous.  more » « less
Award ID(s):
1829299
PAR ID:
10111383
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Geology
ISSN:
1859-0659
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The end-Cretaceous event was catastrophic for terrestrial communities worldwide, yet its long-lasting effect on tropical forests remains largely unknown. We quantified plant extinction and ecological change in tropical forests resulting from the end-Cretaceous event using fossil pollen (>50,000 occurrences) and leaves (>6000 specimens) from localities in Colombia. Late Cretaceous (Maastrichtian) rainforests were characterized by an open canopy and diverse plant–insect interactions. Plant diversity declined by 45% at the Cretaceous–Paleogene boundary and did not recover for ~6 million years. Paleocene forests resembled modern Neotropical rainforests, with a closed canopy and multistratal structure dominated by angiosperms. The end-Cretaceous event triggered a long interval of low plant diversity in the Neotropics and the evolutionary assembly of today’s most diverse terrestrial ecosystem. 
    more » « less
  2. Understanding how plant communities of the past have responded to disturbance events can provide valuable insights when managing our natural resources and assessing human impacts on ecosystems. The geologic record has the potential to reflect these responses through the analysis of functional traits, which relate directly to plant function and ecosystem strategy. There is currently little evidence of how functional traits measurable in fossil leaves vary across succession in different forest types. Because of this, there is a limited ability to identify disturbance as the primary driver of vegetation change within the fossil record. To improve this ability, this study analyzes the carbon stable isotopic composition (δ 13C) of bulk organic matter sampled at the community-scale across successional gradients in a temperate deciduous forest (North Carolina, USA) and compares them against values from a previous study across succession in a tropical evergreen forest (Malaysian Borneo). Leaf δ13C is representative of a plant's water use efficiency (WUE), an important axis of ecological strategy representing the carbon assimilated per water lost in a plant during photosynthesis. Leaf δ13C as a functional trait has the advantage that it is often preserved during leaf fossilization and, integrated across a plant community, can be informative about prevalent ecological strategies, functional diversity , and community assembly dynamics. In Borneo, the community-weighted mean of leaf δ13C to be highest in early-succession plots, indicative of a higher WUE in plant communities closely following a disturbance event. Old growth plots were found to have a lower δ13C, and thus a more conservative WUE. This study will further investigate if this trend is followed within temperate forests, which is important as many mid-late Cenozoic plant assemblages come from what would have been temperate regions. Developing a method of identifying disturbances within the geologic record, will improve the ability to discern drivers of plant community change in the past. This improved knowledge will help guide management decisions across a range of ecosystems. 
    more » « less
  3. Tectonically driven physiographic evolution in early Miocene of eastern Africa significantly shaped landscapes, climates, and vegetation, resulting in habitat heterogeneity. Early hominoids inhabited these landscapes, and their evolutionary history was likely influenced by these heterogenous environments. In western Kenya, around the extinct Tinderet Volcano (ca. 19-21Ma), fossil-rich exposures offer crucial insights into this history with evidence of early hominoids. Here we use analyses of sedimentology, paleosol paleoclimate proxies, fossil leaves, and forestry metrics, to reconstruct the paleoclimate and paleoecological reconstruction of the Koru-16 fossil site. Sedimentological and stratigraphic analyses at Koru-16 reveal a landscape marked disturbance created by periodic volcanic eruptions and stable intervals marked by moderately to poorly developed paleosols. Paleoclimate reconstructions based on paleosol geochemistry indicates warm and wet conditions. Over 1000 fossil leaves were collected from the Koru-16 site, representing 17 morphotypes across two stratigraphic intervals. Mean annual precipitation estimates based on leaf size of shape indicate >2000mm/yr. Leaf lifespan reconstructions reveal predominantly evergreen taxa with a distribution leaf lifespan, similar to modern equatorial African rainforests. Fossil tree stump casts suggest an open forest, similar to contemporary tropical forests supporting large-bodied primates. Importantly, fossil leaves, the tree stump casts, a medium-sized pythonid, and multiple specimens of large-bodied primates occur in the same stratigraphic layer demonstrating their cooccurrence in the Koru-16 ecosystem. The multi-proxy paleoclimate and paleoecological reconstructions for Koru-16 converge on a very wet and warm climate supporting a closed, tropical seasonal forest to rainforest biome. This environment likely provided an ideal habitat for early hominoids, emphasizing the role of forested habitats in their early Miocene evolution. Additional work is ongoing on refining the paleosol paleoclimate estimates with a more recent model and δ13C analysis of soil organic matter will help to further refine these reconstructions. 
    more » « less
  4. Objectives:Fine roots are key to ecosystem-scale nutrient, carbon (C), and water cycling, but our understanding of fine root traits variation within and among tropical forests, one of Earth’s most C-rich ecosystems, is limited. In 2022 and 2023, we aimed to explore differences in deep root characteristics among four lowland tropical forests in Panama, which vary in fertility and mean annual precipitation. We measured radiocarbon content (fraction modern [FM] and Δ14C) and δ13C of live fine roots at depths greater than 80 cm, up to 120 cm. The goal was to understand how deep root characteristics differ across these sites.Datasets included:The datasets provided include .csv and .xlsx files for radiocarbon content (fraction modern [FM] and Δ14C) and δ13C of live fine roots at depths greater than 80 cm, up to 120 cm collected from late 2017 to 2018 across four different forests. Additionally, a .kml file is provided with coordinates for all 32 plots included in the study across four forests (n = 8 plots per site). This dataset serves as baseline data before a throughfall exclusion experiment, Panama Rainforest Changes with Experimental Drying (PARCHED), was implemented. No special software is needed to open these files. 
    more » « less
  5. Understanding and mitigating the e ects of our ongoing biodiversity crisis requires a deep-time perspective on how ecosystems recover in the aftermath of environmental catastrophes. The mass extinction event at the Cretaceous/Paleogene (K/Pg) boundary (ca. 66 Ma) represents a natural laboratory wherein the tempo and mode of biotic recovery can be studied with high chronostratigraphic resolution. Although the morphological evolution of mammals across this event has been reconstructed from skeletal remains, the exact nature of any changes in dietary preference remains unknown. A primary goal here is to fill this gap by investigating how ecological preferences of mammals, reflected by diet, changed from the Late Cretaceous, when they shared landscapes with dinosaurs, to the earliest Paleogene, when they did not. To accomplish this, carbon and oxygen isotope ratios of fossil tooth enamel (bioapatite) were measured using laserablation mass spectrometry in order to infer animal diet and drinking water sources, which vary depending on the niche occupied by an animal. Fossil teeth were collected from two sites located within 400 meters of one another within the West Bijou Creek field area of the Denver Basin, one 9 meters (~128 ky pre-K/Pg) below the boundary (teeth from ceratopsian and hadrosaurid dinosaurs and the multituberculate mammal Mesodma, as well as gar fish scales), and the other 4 meters (~57 ky post-K/Pg) above (Mesodma teeth and gar fish scales). Carbon isotope ratios (δ13C) of Mesodma tooth enamel vary significantly across the K/Pg boundary, with Late Cretaceous teeth having lower and more variable δ13C (-10.1 to -16.4‰, n=4) and early Paleocene teeth having higher and less variable δ13C (-5.3 to 9.0 ‰, n=5), the latter being similar to values for Late Cretaceous dinosaurs. These results suggest Mesodma had very di erent dietary behaviors following the extinction event, presumably a result of the disappearance of non-avian dinosaurs as well as 57% of North American plants, both of which made new food sources and niches available to them. These results also hint at a decoupling of behavioral change from morphological change, at least in the case of Mesodma, over 10 ky timescales. Isotopic analysis of teeth from other Late Cretaceous and earliest Paleogene mammalian taxa is ongoing and will hopefully allow for more detailed interpretations of ecological change across the K/Pg extinction event in the Denver Basin. 
    more » « less