skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Limits on Mode Coherence Due to a Non-static Convection Zone
The standard theory of pulsations deals with the frequencies and growth rates of infinitesimal perturbations in a stellar model. Modes which are calculated to be linearly driven should increase their amplitudes exponentially with time; the fact that nearly constant amplitudes are usually observed is evidence that nonlinear mechanisms inhibit the growth of finite amplitude pulsations. Models predict that the mass of DAV convection zones is very sensitive to temperature (i.e., MCZ∝T−90eff) leading to the possibility that even "small amplitude" pulsators may experience significant nonlinear effects. In particular, the outer turning point of finite-amplitude g-mode pulsations can vary with the local surface temperature, producing a reflected wave that is slightly out of phase with that required for a standing wave. This can lead to a lack of coherence of the mode and a reduction in its global amplitude. We compute the size of this effect for specific examples and discuss the results in the context of Kepler and K2 observations.  more » « less
Award ID(s):
1707419
PAR ID:
10111448
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
21st European Workshop on White Dwarfs
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. - (Ed.)
    We study a thin, laterally confined heated liquid layer subjected to mechanical parametric forcing without gravity. In the absence of parametric forcing, the liquid layer exhibits the Marangoni instability, provided the temperature difference across the layer exceeds a threshold. This threshold varies with the perturbation wavenumber, according to a curve with two minima, which correspond to long- and short-wave instability modes. The most unstable mode depends on the lateral confinement of the liquid layer. In wide containers, the long-wave mode is typically observed, and this can lead to the formation of dry spots. We focus on this mode, as the short-wave mode is found to be unaffected by parametric forcing. We use linear stability analysis and nonlinear computations based on a reduced-order model to investigate how parametric forcing can prevent the formation of dry spots. At low forcing frequencies, the liquid film can be rendered linearly stable within a finite range of forcing amplitudes, which decreases with increasing frequency and ultimately disappears at a cutoff frequency. Outside this range, the flow becomes unstable to either the Marangoni instability (for small amplitudes) or the Faraday instability (for large amplitudes). At high frequencies, beyond the cutoff frequency, linear stabilization through parametric forcing is not possible. However, a nonlinear saturation mechanism, occurring at forcing amplitudes below the Faraday instability threshold, can greatly reduce the film surface deformation and therefore prevent dry spots. Although dry spots can also be avoided at larger forcing amplitudes, this comes at the expense of generating large-amplitude Faraday waves. 
    more » « less
  2. We consider high-order strongly nonlinear long wave models expanded in a single small parameter measuring the ratio of the water depth to the characteristic wavelength. By examining its dispersion relation, the high-order system for the bottom velocity is found stable to all disturbances at any order of approximation. On the other hand, systems for other velocities can be unstable and even ill-posed, as signified by the unbounded maximum growth. Under the steady assumption, a new third-order solitary wave solution of the Euler equations is obtained using the high-order strongly nonlinear system and is expanded in an amplitude parameter, which is different from that used in weakly nonlinear theory. The third-order solution is shown to well describe various physical quantities induced by a finite-amplitude solitary wave, including the wave profile, horizontal velocity profile, particle velocity at the crest and bottom pressure. For numerical computations, the first- and second-order strongly nonlinear systems for the bottom velocity are considered. It is shown that finite difference schemes are unstable due to truncation errors introduced in approximating high-order spatial derivatives and, therefore, a more accurate spatial discretization scheme is necessary. Using a pseudo-spectral method based on finite Fourier series combined with an iterative scheme for the inversion of a non-local operator, the strongly nonlinear systems are solved numerically for the propagation of a single solitary wave and the head-on collision of two counter-propagating solitary waves of finite amplitudes, and the results are compared with previous laboratory measurements. 
    more » « less
  3. Wave-particle interaction plays a crucial role in the dynamics of the Earth’s radiation belts. Cyclotron resonance between coherent whistler mode electromagnetic waves and energetic electrons of the radiation belts is often called a coherent instability. Coherent instability leads to wave amplification/generation and particle acceleration/scattering. The effect of wave on particle’s distribution function is a key component of the instability. In general, whistler wave amplitude can grow over threshold of quasi-linear (linear) diffusion theory which analytically tracks the time-evolution of a particle distribution. Thus, a numerical approach is required to model the nonlinear wave induced perturbations on particle distribution function. A backward test particle model is used to determine the energetic electrons phase space dynamics as a result of coherent whistler wave instability. The results show the formation of a phase space features with much higher resolution than is available with forward scattering models. In the nonlinear regime the formation of electron phase space holes upstream of a monochromatic wave is observed. The results validate the nonlinear phase trapping mechanism that drives nonlinear whistler mode growth. The key differences in phase-space perturbations between the linear and nonlinear scenarios are also illustrated. For the linearized equations or for low (below threshold) wave amplitudes in the nonlinear case, there is no formation of a phase-space hole and both models show features that can be characterized as linear striations or ripples in phase-space. 
    more » « less
  4. We consider a strongly nonlinear long wave model for large amplitude internal waves in a three-layer flow between two rigid boundaries. The model extends the two-layer Miyata–Choi–Camassa (MCC) model (Miyata, Proceedings of the IUTAM Symposium on Nonlinear Water Waves , eds. H. Horikawa & H. Maruo, 1988, pp. 399–406; Choi & Camassa, J. Fluid Mech. , vol. 396, 1999, pp. 1–36) and is able to describe the propagation of long internal waves of both the first and second baroclinic modes. Solitary-wave solutions of the model are shown to be governed by a Hamiltonian system with two degrees of freedom. Emphasis is given to the solitary waves of the second baroclinic mode (mode 2) and their strongly nonlinear characteristics that fail to be captured by weakly nonlinear models. In certain asymptotic limits relevant to oceanic applications and previous laboratory experiments, it is shown that large amplitude mode-2 waves with single-hump profiles can be described by the solitary-wave solutions of the MCC model, originally developed for mode-1 waves in a two-layer system. In other cases, however, e.g. when the density stratification is weak and the density transition layer is thin, the richness of the dynamical system with two degrees of freedom becomes apparent and new classes of mode-2 solitary-wave solutions of large amplitudes, characterized by multi-humped wave profiles, can be found. In contrast with the classical solitary-wave solutions described by the MCC equation, such multi-humped solutions cannot exist for a continuum set of wave speeds for a given layer configuration. Our analytical predictions based on asymptotic theory are then corroborated by a numerical study of the original Hamiltonian system. 
    more » « less
  5. We describe theory and experiments investigating nonlinear beat wave decay of diocotron modes on a nonneutral plasma column (or Kelvin waves on a vortex). Specifically, a Kelvin/diocotron pump wave varying as Ap exp [i(lpθ−ωpt)] decays into two waves: a Kelvin/diocotron daughter wave with exponentially growing amplitude Ad(t), mode number ld<lp, and frequency ωd; and an exponentially growing “beat wave” with mode number lb and frequency ωb. Nonlinear wave–wave coupling requires lb=lp−ld and ωb=ωp−ωd. The new theory simplifies and extends a previous weak-turbulence theory for the exponential growth rate of this instability, by instead using an eigenmode expansion to describe the beat wave as a wavepacket of continuum (Case/van Kampen) modes. The new theory predicts the growth rate, the nonlinear frequency shift (both proportional to Ap2), and the functional form of the beat wave, with amplitude proportional to ApAd*(t). Experiments observe beat wave decay on electron plasma columns for a range of mode numbers up to lp=5 and ld = 4, with results in quantitative agreement with the theory, including the ld = 1 case for which measured growth rates are negligible, as expected theoretically. 
    more » « less