skip to main content

Title: Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter
Optical cavities can enhance and control light-matter interactions. This level of control has recently been extended to the nanoscale with single emitter strong coupling even at room temperature using plasmonic nanostructures. However, emitters in static geometries, limit the ability to tune the coupling strength or to couple different emitters to the same cavity. Here, we present tip-enhanced strong coupling (TESC) with a nanocavity formed between a scanning plasmonic antenna tip and the substrate. By reversibly and dynamically addressing single quantum dots, we observe mode splitting up to 160 meV and anticrossing over a detuning range of ~100 meV, and with subnanometer precision over the deep subdiffraction-limited mode volume. Thus, TESC enables previously inaccessible control over emitter-nanocavity coupling and mode volume based on near-field microscopy. This opens pathways to induce, probe, and control single-emitter plasmon hybrid quantum states for applications from optoelectronics to quantum information science at room temperature.
Authors:
; ; ; ; ; ; ;
Award ID(s):
1709822
Publication Date:
NSF-PAR ID:
10111458
Journal Name:
Science Advances
Volume:
5
Issue:
7
Page Range or eLocation-ID:
eaav5931
ISSN:
2375-2548
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We develop the analytic theory describing the formation and evolution of entangled quantum states for a fermionic quantum emitter coupled simultaneously to a quantized electromagnetic field in a nanocavity and quantized phonon or mechanical vibrational modes. The theory is applicable to a broad range of cavity quantum optomechanics problems and emerging research on plasmonic nanocavities coupled to single molecules and other quantum emitters. The optimal conditions for a tripartite entanglement are realized near the parametric resonances in a coupled system. The model includes dissipation and decoherence effects due to coupling of the fermion, photon, and phonon subsystems to their dissipative reservoirsmore »within the stochastic evolution approach, which is derived from the Heisenberg–Langevin formalism. Our theory provides analytic expressions for the time evolution of the quantum state and observables and the emission spectra. The limit of a classical acoustic pumping and the interplay between parametric and standard one-photon resonances are analyzed.« less
  2. Controllable strong interactions between a nanocavity and a single emitter is important to manipulating optical emission in a nanophotonic systems but challenging to achieve. Here a three-dimensional DNA origami, named as DNA rack (DR) is proposed and demonstrated to deterministically and precisely assemble single emitters within ultra-small plasmonic nanocavities formed by closely coupled gold nanorods (AuNRs). The DR uniquely possesses a saddle shape with two tubular grooves that geometrically allows a snug fit and linearly align two AuNRs with a bending angle <10°. It also includes a spacer at the saddle point to maintain the gap between AuNRs as smallmore »as 2-3 nm, forming a nanocavity estimated to be 20 nm3 and an experimentally measured Q factor of 7.3. A DNA docking strand is designed at the spacer to position a single fluorescent emitter at nanometer accuracy within the cavity. Using Cy5 as a model emitter, a ~30-fold fluorescence enhancement and a significantly reduced emission lifetime (from 1.6 ns to 670 ps) were experimentally verified, confirming significant emitter-cavity interactions. This DR-templated assembly method is capable of fitting AuNRs of variable length-to-width aspect ratios to form anisotropic nanocavities and deterministically incorporating different single emitters, thus enabling flexible design of both cavity resonance and emission wavelengths to tailor light-matter interactions at nanometer scale.« less
  3. Monitoring and controlling the neutral and charged excitons (trions) in two-dimensional (2D) materials are essential for the development of high-performance devices. However, nanoscale control is challenging because of diffraction-limited spatial resolution of conventional far-field techniques. Here, we extend the classical tip-enhanced photoluminescence based on tip-substrate nanocavity to quantum regime and demonstrate controlled nano-optical imaging, namely, tip-enhanced quantum plasmonics. In addition to improving the spatial resolution, we use the scanning probe to control the optoelectronic response of monolayer WS 2 by varying the neutral/charged exciton ratio via charge tunneling in Au-Ag picocavity. We observe trion “hot spots” generated by varying themore »picometer-scale probe-sample distance and show the effects of weak and strong coupling, which depend on the spatial location. Our experimental results are in agreement with simulations and open an unprecedented view of a new range of quantum plasmonic phenomena with 2D materials that will help to design new quantum optoelectronic devices.« less
  4. Abstract The cooperative phenomena stemming from the radiation field-mediated coupling between individual quantum emitters are presently attracting broad interest for applications related to on-chip photonic quantum memories and long-range entanglement. Common to these applications is the generation of electro-magnetic modes over macroscopic distances. Much research, however, is still needed before such systems can be deployed in the form of practical devices, starting with the investigation of alternate physical platforms. Quantum emitters in two-dimensional (2D) systems provide an intriguing route because these materials can be adapted to arbitrarily shaped substrates to form hybrid systems wherein emitters are near-field-coupled to suitable opticalmore »modes. Here, we report a scalable coupling method allowing color center ensembles in a van der Waals material (hexagonal boron nitride) to couple to a delocalized high-quality plasmonic surface lattice resonance. This type of architecture is promising for photonic applications, especially given the ability of the hexagonal boron nitride emitters to operate as single-photon sources at room temperature.« less
  5. Abstract Integration of quantum emitters in photonic structures is an important step in the broader quest to generate and manipulate on-demand single photons via compact solid-state devices. Unfortunately, implementations relying on material platforms that also serve as the emitter host often suffer from a tradeoff between the desired emitter properties and the photonic system practicality and performance. Here, we demonstrate “pick and place” integration of a Si 3 N 4 microdisk optical resonator with a bright emitter host in the form of ∼20-nm-thick hexagonal boron nitride (hBN). The film folds around the microdisk maximizing contact to ultimately form a hybridmore »hBN/Si 3 N 4 structure. The local strain that develops in the hBN film at the resonator circumference deterministically activates a low density of defect emitters within the whispering gallery mode volume of the microdisk. These conditions allow us to demonstrate cavity-mediated out-coupling of emission from defect states in hBN through the microdisk cavity modes. Our results pave the route toward the development of chip-scale quantum photonic circuits with independent emitter/resonator optimization for active and passive functionalities.« less