Scatterplots commonly use multiple visual channels to encode multivariate datasets. Such visualizations often use size, shape, and color as these dimensions are considered separable--dimensions represented by one channel do not significantly interfere with viewers' abilities to perceive data in another. However, recent work shows the size of marks significantly impacts color difference perceptions, leading to broader questions about the separability of these channels. In this paper, we present a series of crowdsourced experiments measuring how mark shape, size, and color influence data interpretation in multiclass scatterplots. Our results indicate that mark shape significantly influences color and size perception, and that separability among these channels functions asymmetrically: shape more strongly influences size and color perceptions in scatterplots than size and color influence shape. Models constructed from the resulting data can help designers anticipate viewer perceptions to build more effective visualizations.
more »
« less
Color Crafting: Automating the Construction of Designer Quality Color Ramps
Visualizations often encode numeric data using sequential and diverging color ramps. Effective ramps use colors that are sufficiently discriminable, align well with the data, and are aesthetically pleasing. Designers rely on years of experience to create high-quality color ramps. However, it is challenging for novice visualization developers that lack this experience to craft effective ramps as most guidelines for constructing ramps are loosely defined qualitative heuristics that are often difficult to apply. Our goal is to enable visualization developers to readily create effective color encodings using a single seed color. We do this using an algorithmic approach that models designer practices by analyzing patterns in the structure of designer-crafted color ramps. We construct these models from a corpus of 222 expert-designed color ramps, and use the results to automatically generate ramps that mimic designer practices. We evaluate our approach through an empirical study comparing the outputs of our approach with designer-crafted color ramps. Our models produce ramps that support accurate and aesthetically pleasing visualizations at least as well as designer ramps and that outperform conventional mathematical approaches.
more »
« less
- Award ID(s):
- 1657599
- PAR ID:
- 10111569
- Date Published:
- Journal Name:
- IEEE Transactions on Visualization and Computer Graphics
- ISSN:
- 1077-2626
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wasson, B. (Ed.)Visualization plays an important role in Epistemic Network Analysis (ENA), not only in graphical representation but also to facilitate interpretation and communicate research findings. However, there is no published description of the design features behind ENA network graphs. This paper provides this description from a graphic design perspective, focusing on the design principles that make ENA network graphs aesthetically pleasing and intuitive to understand. By reviewing graphic design principles and examining other extant network visualizations, we show how the current ENA network graphs highlight the most important network characteristics and facilitate sense-making.more » « less
-
Trust is fundamental to effective visual data communication between the visualization designer and the reader. Although personal experience and preference influence readers’ trust in visualizations, visualization designers can leverage design techniques to create visualizations that evoke a "calibrated trust," at which readers arrive after critically evaluating the information presented. To systematically understand what drives readers to engage in "calibrated trust," we must first equip ourselves with reliable and valid methods for measuring trust. Computer science and data visualization researchers have not yet reached a consensus on a trust definition or metric, which are essential to building a comprehensive trust model in human-data interaction. On the other hand, social scientists and behavioral economists have developed and perfected metrics that can measure generalized and interpersonal trust, which the visualization community can reference, modify, and adapt for our needs. In this paper, we gather existing methods for evaluating trust from other disciplines and discuss how we might use them to measure, define, and model trust in data visualization research. Specifically, we discuss quantitative surveys from social sciences, trust games from behavioral economics, measuring trust through measuring belief updating, and measuring trust through perceptual methods. We assess the potential issues with these methods and consider how we can systematically apply them to visualization research.more » « less
-
Educators can leverage a variety of process models to scaffold students from beginning designer practices to practices aligned with more experienced designers. The Center for Socially Engaged Design at the University of Michigan developed a Socially Engaged Design (SED) Process Model to explicitly emphasize important aspects of design that are often underemphasized or not included in commonly-used design process model visualizations, including, for example, designers embracing the limitations of their own perspective and acknowledging the power they hold, the benefits of integrating contextual considerations, and the use of prototypes throughout a design process rather than as single phase in a design process. To better understand the role of design process models, broadly, and the perceived value of process models that emphasize the importance of people and context in design work, specifically, we investigated upper-level mechanical engineering students' perceptions of this SED Process Model’s visualization. Our findings from this initial exploratory study showed both variability and several consistent themes in participants’ perceptions, for example, there were several interpretations of relationships between different aspects of the model, iteration in design was salient to all participants, and while this SED Process Model’s visualization does have recommendations, several participants noted it does not specify exactly how to achieve those recommendations. Understanding engineering students’ perceptions of this SED Process Model’s visualization can help us (1) iterate on the process model’s visualization and (2) better understand how to leverage multiple process model visualizations in engineering curricula.more » « less
-
People have associations between colors and concepts that influence the way they interpret color meaning in information visualizations (e.g., charts, maps, diagrams). These associations are not limited to concrete objects (e.g., fruits, vegetables); even abstract concepts, like sleeping and driving, have systematic color-concept associations. However, color-concept associations and color meaning (color semantics) are not the same thing, and sometimes they conflict. This article describes an approach to understanding color semantics called the color inference framework. The framework shows how color semantics is highly flexible and context dependent, which makes color an effective medium for communication.