skip to main content


Title: The perpetual state of emergency that sacrifices protected areas in a changing climate: Protected Areas and Agriculture
Award ID(s):
1735362
NSF-PAR ID:
10111766
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Conservation Biology
Volume:
32
Issue:
4
ISSN:
0888-8892
Page Range / eLocation ID:
905 to 915
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The costs and benefits of customary top-down Marine Protected Areas (MPAs) have been studied at length. But the costs and benefits of community-based MPAs –an increasingly common tool in conservation and fisheries management– remain understudied. Here, we quantify the operational costs of maintaining community-based MPA monitoring programs in nine small-scale fishing communities in Mexico. We then compare these costs to the potential extractive use value of invertebrate and fish biomass contained in the reserves. We find that the annual monitoring costs (median: 1,130 MXN/ha; range: 23-3,561 MXN/ha) represent between 0.3% and 55% of the extractive use value of the biomass contained in the reserves (median: 21.31 thousand MXN/ha; 5.22 - 49/12 thousand MXN/ha). These results suggest that the direct monetary benefits of community-based marine conservation can outweigh the costs of monitoring programs, providing further support for these types of management schemes. While further research should explore other mechanisms that would allow fishers to leverage the non-extractive use value of reserves (e.g., tourism) or the non-use value (i.e.existence value of biodiversity) to sustainably finance their conservation efforts, a stop-gap measure to ensuring long-term monitoring costs are covered might include limited extractive use of resources contained in the reserves.

     
    more » « less
  2. null (Ed.)
    Climate warming is driving changes in species distributions and community composition. Many species have a so-called climatic debt, that is, shifts in range lag behind shifts in temperature isoclines. Inside protected areas (PAs), community changes in response to climate warming can be facilitated by greater colonization rates by warm-dwelling species, but also mitigated by lowering extirpation rates of cold-dwelling species. An evaluation of the relative importance of colonization-extirpation processes is important to inform conservation strategies that aim for both climate debt reduction and species conservation. We assessed the colonization-extirpation dynamics involved in community changes in response to climate inside and outside PAs. To do so, we used 25 years of occurrence data of nonbreeding waterbirds in the western Palearctic (97 species, 7071 sites, 39 countries, 1993–2017). We used a community temperature index (CTI) framework based on species thermal affinities to investigate species turnover induced by temperature increase. We determined whether thermal community adjustment was associated with colonization by warm-dwelling species or extirpation of cold-dwelling species by modeling change in standard deviation of the CTI (CTISD). Using linear mixed-effects models, we investigated whether communities in PAs had lower climatic debt and different patterns of community change than communities outside PAs. For CTI and CTISD combined, communities inside PAs had more species, higher colonization, lower extirpation, and lower climatic debt (16%) than communities outside PAs. Thus, our results suggest that PAs facilitate 2 independent processes that shape community dynamics and maintain biodiversity. The community adjustment was, however, not sufficiently fast to keep pace with the large temperature increases in the central and northeastern western Palearctic. Our results underline the potential of combining CTI and CTISD metrics to improve understanding of the colonization-extirpation patterns driven by climate warming. 
    more » « less
  3. Abstract Marine Protected Areas (MPAs) are designed to enhance biodiversity and ecosystem services. Some MPAs are also established to benefit fisheries through increased egg and larval production, or the spillover of mobile juveniles and adults. Whether spillover influences fishery landings depend on the population status and movement patterns of target species both inside and outside of MPAs, as well as the status of the fishery and behavior of the fleet. We tested whether an increase in the lobster population inside two newly established MPAs influenced local catch, fishing effort, and catch-per-unit-effort (CPUE) within the sustainable California spiny lobster fishery. We found greater build-up of lobsters within MPAs relative to unprotected areas, and greater increases in fishing effort and total lobster catch, but not CPUE, in fishing zones containing MPAs vs. those without MPAs. Our results show that a 35% reduction in fishing area resulting from MPA designation was compensated for by a 225% increase in total catch after 6-years, thus indicating at a local scale that the trade-off of fishing ground for no-fishing zones benefitted the fishery. 
    more » « less
  4. Biological reference points for fishery management depend on estimates of current stock status relative to unfished biomass (depletion). The ratio of fish density outside to inside a marine reserve, the density ratio, could serve as a proxy for depletion for data-poor management. However, transient dynamics associated with time lags in returning to the unfished state following reserve implementation make that proxy inaccurate on short time scales. We assessed density ratio management rules using an age-structured, spatially explicit model of four US west coast nearshore fishes following reserve implementation, with scenarios encompassing sampling error, recruitment variability, and uncertainty in natural mortality. In deterministic simulations, management incorporating time lags generally resulted in a higher mean and lower variability in biomass over 20 years, but lower mean yield compared to management that did not. However, when stochastic recruitment was included, differences among simulations due to stochasticity were much greater than any difference in performance between management strategies. Nonetheless, in certain cases, accounting for time lags could help avoid unwarranted increases in harvest effort after reserve implementation. 
    more » « less