skip to main content


Title: Electrowetting-based coalescence of droplets during dropwise condensation of humid air
Dropwise condensation yields higher heat transfer coefficients by avoiding the thermal resistance of the condensate film, seen during filmwise condensation. This work explores further enhancement of dropwise condensation heat transfer through the use of electrowetting to achieve faster droplet growth via coalescence of the condensed droplets. Electrowetting is a well understood microfluidic technique to actuate and control droplets. This work shows that AC electric fields can significantly enhance droplet growth dynamics. This enhancement is a result of coalescence triggered by various types of droplet motion (translation of droplets, oscillations of three phase line), which in turn depends on the frequency of the applied AC waveform. The applied electric field modifies droplet condensation patterns as well as the roll-off dynamics on the surface. Experiments are conducted to study early-stage droplet growth dynamics, as well as steady state condensation rates under the influence of electric fields. It is noted that this study deals with condensation of humid air, and not pure steam. Results show that increasing the voltage magnitude and frequency increases droplet growth rate and overall condensation rate. Overall, this study reports more than a 30 % enhancement in condensation rate resulting from the applied electric field, which highlights the potential of this concept for condensation heat transfer enhancement.  more » « less
Award ID(s):
1805179
NSF-PAR ID:
10111891
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Summer Heat Transfer Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dropwise condensation heat transfer is significantly higher than filmwise condensation heat transfer due to the absence of the thermal resistance associated with the condensed water film. This study uses electrowetting to enhance coalescence and roll-off of condensed droplets, with the objective of enhancing the condensation rate. Coalescence enhancement is achieved by electric field-driven droplet motion such as translation of droplets, and oscillations of the three-phase line. Experiments are conducted to study early-stage droplet growth dynamics, and steady state condensation under electrowetting fields. Results show that droplet growth and roll-off increases with the voltage and frequency of the applied AC field. AC electric fields are seen to be more effective than DC electric fields. The overall condensation rate depends on the roll-off size of droplets, frequency of roll-off events, and on the interactions of the rolled-off droplets with the remainder of the droplets. All these phenomena can be altered by the applied electric field. An analytical heat transfer model is developed which uses the measured droplet size distribution to estimate the surface heat flux. Overall, this study reports that electric fields can enhance the condensation rate by more than 30 %. 
    more » « less
  2. Atmospheric condensation is very important for multiple practical applications such as heat transfer, thermal management, aerospace, and condensate harvesting. Water droplets heterogeneously nucleate on the surfaces when the temperature is below the dew point temperature. The nucleation energy barrier for a condensed droplet varies significantly with the humidity content in the operating environment. The freezing of this condensate is also dependent on the operating conditions and surface properties. This article presents an experimental study of condensation and freezing from humid air with the objective of understanding how the surface morphology and chemistry determines the droplet shape and wetting state. Hexagonal close-packed arrays of titanium (Ti) pillars are patterned using microsphere photolithography (MPL). The Ti nanostructured surface was tested with and without a Teflon© coating to reveal the condensate harvesting, passive freezing, and dropwise condensation applications, respectively. Condensation and freezing tests were conducted in the presence of non-condensable gases (air) with different relative humidity (RH) levels to control the nucleation site density. The experiments showed that droplet growth occurs in the following stages: initial nucleation, direct growth, and coalescence events. By pinning droplets, coalescence is suppressed for the Ti nanopillared surface altering the size distribution of droplets and significantly accelerating the freezing process. 
    more » « less
  3. Abstract

    Most studies on electrowetting (EW) involve the use of AC electric fields, which cause droplets to oscillate in response to the sinusoidal waveform. Oscillation-driven mixing in droplets is the basis for multiple microfluidic applications. Presently, we study the voltage and AC frequency-dependent oscillations of electrowetted water droplets on a smooth, hydrophobic surface. We introduce a new approach towards analyzing droplet oscillations, which involves characterization of the oscillation amplitude of the contact angle (CA). An experimentally validated, fundamentals-based model to predict voltage and frequency-dependent CA oscillations is developed, which is analogous to the Lippmann’s equation for predicting voltage-dependent CAs. It is seen that this approach can help estimate the threshold voltage more accurately, than from experimental measurements of CA change. Additionally, we use a coplanar electrode configuration with high voltage and ground electrodes arranged on the substrate. This configuration eliminates measurement artefacts in the classical EW configuration associated with a wire electrode protruding into the droplet. An interesting consequence of this configuration is that the system capacitance is reduced substantially, compared to the classical configuration. The coplanar electrode configuration shows a reduced rate of CA change with voltage, thereby increasing the voltage range over which the CA can be modulated.

     
    more » « less
  4. Abstract

    Collisional growth of cloud droplets is an essential yet uncertain process for drizzle and precipitation formation. To improve the quantitative understanding of this key component of cloud‐aerosol‐turbulence interactions, observational studies of collision‐coalescence in a controlled laboratory environment are needed. In an existing convection‐cloud chamber (the Pi Chamber), collisional growth is limited by low liquid water content and short droplet residence times. In this work, we use numerical simulations to explore various configurations of a convection‐cloud chamber that may intensify collision‐coalescence. We employ a large‐eddy simulation (LES) model with a size‐resolved (bin) cloud microphysics scheme to explore how cloud properties and the intensity of collision‐coalescence are affected by the chamber size and aspect ratio, surface roughness, side‐wall wetness, side‐wall temperature arrangement, and aerosol injection rate. Simulations without condensation and evaporation within the domain are first performed to explore the turbulence dynamics and wall fluxes. The LES wall fluxes are used to modify the Scalar Flux‐budget Model, which is then applied to demonstrate the need for non‐uniform side‐wall temperature (two side walls as warm as the bottom and the two others as cold as the top) to maintain high supersaturation in a tall chamber. The results of LES with full cloud microphysics reveal that collision‐coalescence is greatly enhanced by employing a taller chamber with saturated side walls, non‐uniform side‐wall temperature, and rough surfaces. For the conditions explored, although lowering the aerosol injection rate broadens the droplet size distribution, favoring collision‐coalescence, the reduced droplet number concentration decreases the frequency of collisions.

     
    more » « less
  5. Size-controlled polymer nanodomes (PNDs) benefit a broad cross-section of existing and emerging technologies. Condensed droplet polymerization (CDP) is a vacuum-based synthesis technology that produces PNDs from monomer precursors in a single step. However, the effect of synthesis and processing conditions on the PND size distribution remains elusive. Towards size distribution control, we report the effect of substrate temperature, on which monomer droplets condense, on the size distribution of PNDs. We take a reductionist approach and operate the CDP under batch mode to match the conditions commonly used in condensation research. Notably, despite the rich knowledge base in dropwise condensation, the behavior of nonpolar liquids like a common monomer, i.e., 2-hydroxyethyl methacrylate (HEMA), is not well understood. We bridge that gap by demonstrating that dropwise condensation of HEMA follows a two-stage growth process. Early-stage growth is dominated by drop nucleation and growth, giving rise to relatively uniform sizes with a lognormal distribution, whereas late-stage growth is dominated by the combined effect of drop coalescence and renucleation, leading to a bimodal size distribution. This new framework for understanding the PND size distribution enables an unprecedented population of PNDs. Their controlled size distribution has the potential to enable programmable properties for emergent materials.

     
    more » « less