skip to main content


Title: A Hydroclimatological Analysis of Precipitation in the Ganges–Brahmaputra–Meghna River Basin
Understanding seasonal precipitation input into river basins is important for linking large-scale climate drivers with societal water resources and the occurrence of hydrologic hazards such as floods and riverbank erosion. Using satellite data at 0.25-degree resolution, spatial patterns of monsoon (June-July-August-September) precipitation variability between 1983 and 2015 within the Ganges–Brahmaputra–Meghna (GBM) river basin are analyzed with Principal Component (PC) analysis and the first three modes (PC1, PC2 and PC3) are related to global atmospheric-oceanic fields. PC1 explains 88.7% of the variance in monsoonal precipitation and resembles climatology with the center of action over Bangladesh. The eigenvector coefficients show a downward trend consistent with studies reporting a recent decline in monsoon rainfall, but little interannual variability. PC2 explains 2.9% of the variance and shows rainfall maxima to the far western and eastern portions of the basin. PC2 has an apparent decadal cycle and surface and upper-air atmospheric height fields suggest the pattern could be forced by tropical South Atlantic heating and a Rossby wave train stemming from the North Atlantic, consistent with previous studies. Finally, PC3 explains 1.5% of the variance and has high spatial variability. The distribution of precipitation is somewhat zonal, with highest values at the southern border and at the Himalayan ridge. There is strong interannual variability associated with PC3, related to the El Nino/Southern Oscillation (ENSO). Next, we perform a hydroclimatological downscaling, as precipitation attributed to the three PCs was averaged over the Pfafstetter level-04 sub-basins obtained from the World Wildlife Fund (Gland, Switzerland). While PC1 was the principal contributor of rainfall for all sub-basins, PC2 contributed the most to rainfall in the western Ganges sub-basin (4524) and PC3 contributed the most to the rainfall in the northern Brahmaputra (4529). Monsoon rainfall within these two sub-basins were the only ones to show a significant relationship (negative) with ENSO, whereas four of the eight sub-basins had a significant relationship (positive) with sea surface temperature (SST) anomalies in the tropical South Atlantic. This work demonstrates a geographic dependence on climate teleconnections in the GBM that deserves further study.  more » « less
Award ID(s):
1660447
NSF-PAR ID:
10112011
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Water
Volume:
10
Issue:
10
ISSN:
2073-4441
Page Range / eLocation ID:
1359
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A recently funded US National Science Foundation project seeks to investigate monsoon variability within the Ganges-Brahmaputra-Meghna (GBM) river basin as a potential predictor for annual shoreline erosion rates in the lower coastal delta region. Many previous studies have examined the interannual variability of South Asian precipitation either within political boundaries or across large spans of latitudes and longitudes, but few have taken a more hydrologic approach by analyzing the atmospheric-oceanic forcings that lead to precipitation falling only within the GBM basin. The temporal climate patterns would likely be different from previous studies and are hypothesized to have a more direct effect on outlet discharge and erosion rates. In the present study, mean monsoon precipitation (June-July-August-September) for the 2,309 0.25° grid boxes of the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) was extracted using geospatial methods. A Principal Component (PC) analysis was performed over the period 1983 to 2015. The first PC explains 88.7% of the variance and resembles climatology with the center of action over Bangladesh. The eigenvector shows a downward trend consistent with studies reporting a recent decline in monsoon rainfall. The second PC explains 2.9% of the variance and concentrates rainfall in the western portion of the basin. The 2nd component has greater temporal variability than the 1st component and an apparent decadal cycle. An analysis of global precipitation indicates that the rainfall patterns obtained within the GBM are localized. Surface and upper-air atmospheric height fields suggest the 2nd PC pattern is forced by a Rossby wave train stemming from the North Atlantic. 
    more » « less
  2. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 353 (29 November 2014–29 January 2015) drilled six sites in the Bay of Bengal, recovering 4280 m of sediments during 32.9 days of on-site drilling. Recovery averaged 97%, including coring with the advanced piston corer, half-length advanced piston corer, and extended core barrel systems. The primary objective of Expedition 353 is to reconstruct changes in Indian monsoon circulation since the Miocene at tectonic to centennial timescales. Analysis of the sediment sections recovered will improve our understanding of how monsoonal climates respond to changes in forcing external to the Earth’s climate system (i.e., insolation) and changes in forcing internal to the Earth’s climate system, including changes in continental ice volume, greenhouse gases, sea level, and the ocean-atmosphere exchange of energy and moisture. All of these mechanisms play critical roles in current and future climate change in monsoonal regions. The primary signal targeted is the exceptionally low salinity surface waters that result, in roughly equal measure, from both direct summer monsoon precipitation to the Bay of Bengal and runoff from the numerous large river basins that drain into the Bay of Bengal. Changes in rainfall and surface ocean salinity are captured and preserved in a number of chemical, physical, isotopic, and biological components of sediments deposited in the Bay of Bengal. Expedition 353 sites are strategically located in key regions where these signals are the strongest and best preserved. Salinity changes at IODP Sites U1445 and U1446 (northeast Indian margin) result from direct precipitation as well as runoff from the Ganges-Brahmaputra river complex and the many river basins of peninsular India. Salinity changes at IODP Sites U1447 and U1448 (Andaman Sea) result from direct precipitation and runoff from the Irrawaddy and Salween river basins. IODP Site U1443 (Ninetyeast Ridge) is an open-ocean site with a modern surface water salinity very near the global mean but is documented to have recorded changes in monsoonal circulation over orbital to tectonic timescales. This site serves as an anchor for establishing the extent to which the north to south (19°N to 5°N) salinity gradient changes over time. 
    more » « less
  3. null (Ed.)
    The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm and saline surface waters from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean models and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that act as a control mechanism on the basin-wide AMOC, with implications for convective activity in the North Atlantic and Northern Hemisphere climate. International Ocean Discovery Program (IODP) Expedition 361 aims to extend this work to periods of major ocean and climate restructuring during the Pliocene/Pleistocene to assess the role that the Agulhas Current and ensuing (interocean) marine heat and salt transports have played in shaping the regional- and global-scale ocean and climate development. This expedition will core six sites on the southeast African margin and Indian–Atlantic ocean gateway. The primary sites are located between 416 and 3040 m water depths. The specific scientific objectives are • To assess the sensitivity of the Agulhas Current to changing climates of the Pliocene/Pleistocene, in association with transient to long-term changes of high-latitude climates, tropical heat budgets, and the monsoon system; • To reconstruct the dynamics of the Indian–Atlantic gateway circulation during such climate changes, in association with changing wind fields and migrating ocean fronts; • To examine the connection between Agulhas leakage and ensuing buoyancy transfer and shifts of the AMOC during major ocean and climate reorganizations during at least the last 5 My; and • To address the impact of Agulhas variability on southern Africa terrestrial climates and, notably, rainfall patterns and river runoff. Additionally, Expedition 361 will complete an intensive interstitial fluids program at four of the sites aimed at constraining the temperature, salinity, and density structure of the Last Glacial Maximum (LGM) deep ocean, from the bottom of the ocean to the base of the main thermocline, to address the processes that could fill the LGM ocean and control its circulation. Expedition 361 will seek to recover ~5200 m of sediment in total. The coring strategy will include the triple advanced piston corer system along with the extended core barrel coring system where required to reach target depths. Given the significant transit time required during the expedition (15.5 days), the coring schedule is tight and will require detailed operational planning and flexibility from the scientific party. The final operations plan, including the number of sites to be cored and/or logged, is contingent upon the R/V JOIDES Resolution operations schedule, operational risks, and the outcome of requests for territorial permission to occupy particular sites. All relevant IODP sampling and data policies will be adhered to during the expedition. Beyond the interstitial fluids program, shipboard sampling will be restricted to acquiring ephemeral data and to limited low-resolution sampling of parameters that may be critically affected by short-term core storage. Most sampling will be deferred to a postcruise sampling party that will take place at the Gulf Coast Repository in College Station, Texas (USA). A substantial onshore X-ray fluorescence scanning plan is anticipated and will be further developed in consultation with scientific participants. 
    more » « less
  4. Abstract

    A survey of intraseasonal, seasonal, and interannual precipitation and 850 hPa winds for various monsoon regimes around the world is presented for the Community Earth System Model Version 2 (CESM2) compared to observations and the previous generation CESM1. In CESM2 the south Asian monsoon has a reduction of excessive precipitation in the western Indian Ocean and an increase of precipitation in the eastern Bay of Bengal and land areas of Vietnam, Cambodia, and Laos. The seasonal timing of the south Asian monsoon, monsoon‐ENSO connections, and monsoon intraseasonal variability all are improved compared to CESM1. For the Australian monsoon, deficient precipitation over the Maritime Continent has been improved in CESM2 with increases of precipitation over the large tropical islands of Borneo, Celebes, and Papua New Guinea and decreases over southwestern Australia. In the West African monsoon, May–June seasonal rainfall occurs more preferentially over the African coast in CESM2 as in observations, and excessive rainfall over the Ethiopian region is reduced. During July–September in the West African monsoon, deficient precipitation over equatorial Africa in CESM1 has been lessened in CESM2, and there are increases in precipitation over the Guinean coast, though there is little overall improvement in the South African monsoon. In the South American monsoon, precipitation in CESM2 is improved with increased precipitation over the Amazon in central and western Brazil. CESM2 simulates a reduction of excessive precipitation seen in CESM1 over coastal Mexico extending up into the U.S. Great Plains in the North American monsoon.

     
    more » « less
  5. Abstract

    Studies have suggested that the South Atlantic Ocean plays an important role in modulating climate at global and regional scales and thus could serve as a potential predictor of extreme rainfall and temperature events globally. To understand how propagating modes of variability influence the circulation of the subtropical gyre and the southward flowing Brazil Current (BC) at interannual frequencies, a Complex Empirical Orthogonal Function (CEOF) analysis was performed on the satellite‐derived sea surface height (SSH). The first three CEOF modes explain about 23%, 16%, and 11% of the total interannual variability and show clear westward propagation with phase speeds comparable to that of theoretical baroclinic mode 1 Rossby waves. Results suggest that there is a change in the way energy is distributed among the modes before and after 2005. Before 2005, the SSH variability in the western boundary in the South Atlantic and the volume transport of the BC are more closely linked to the first and the second modes, while the third mode dominates after 2005. This change in energy distribution around 2005 is associated with the recent El Niño‐Southern Oscillation (ENSO) regime shift in the Pacific Ocean via atmospheric teleconnections. We found that the first CEOF mode is strongly correlated with eastern Pacific (i.e., canonical) ENSO events and the Pacific Decadal Oscillation, whereas the third CEOF is correlated to central Pacific (i.e., Modoki) ENSO. These results are useful to understand the overall dynamics of the South Atlantic and to potentially improve predictability of Meridional Overturning Circulation and monsoon pattern changes around the world.

     
    more » « less