skip to main content


Title: Neural Temporality Adaptation for Document Classification: Diachronic Word Embeddings and Domain Adaptation Models
Language usage can change across periods of time, but document classifiers are usually trained and tested on corpora spanning multiple years without considering temporal variations. This paper describes two complementary ways to adapt classifiers to shifts across time. First, we show that diachronic word embeddings, which were originally developed to study language change, can also improve document classification, and we show a simple method for constructing this type of embedding. Second, we propose a time-driven neural classification model inspired by methods for domain adaptation. Experiments on six corpora show how these methods can make classifiers more robust over time.  more » « less
Award ID(s):
1657338
NSF-PAR ID:
10112018
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Page Range / eLocation ID:
4113–4123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many corpora span broad periods of time. Language processing models trained during one time period may not work well in future time periods, and the best model may depend on specific times of year (e.g., people might describe hotels differently in reviews during the winter versus the summer). This study investigates how document classifiers trained on documents from certain time intervals perform on documents from other time intervals, considering both seasonal intervals (intervals that repeat across years, e.g., winter) and non-seasonal intervals (e.g., specific years). We show experimentally that classification performance varies over time, and that performance can be improved by using a standard domain adaptation approach to adjust for changes in time. 
    more » « less
  2. Language use varies across different demographic factors, such as gender, age, and geographic location. However, most existing document classification methods ignore demographic variability. In this study, we examine empirically how text data can vary across four demographic factors: gender, age, country, and region. We propose a multitask neural model to account for demographic variations via adversarial training. In experiments on four English-language social media datasets, we find that classification performance improves when adapting for user factors. 
    more » « less
  3. Insightful findings in political science often require researchers to analyze documents of a certain subject or type, yet these documents are usually contained in large corpora that do not distinguish between pertinent and non-pertinent documents. In contrast, we can find corpora that label relevant documents but have limitations (e.g., from a single source or era), preventing their use for political science research. To bridge this gap, we present adaptive ensembling, an unsupervised domain adaptation framework, equipped with a novel text classification model and time-aware training to ensure our methods work well with diachronic corpora. Experiments on an expert-annotated dataset show that our framework outperforms strong benchmarks. Further analysis indicates that our methods are more stable, learn better representations, and extract cleaner corpora for fine-grained analysis. 
    more » « less
  4. Language model (LM) pretraining can learn various knowledge from text corpora, helping downstream tasks. However, existing methods such as BERT model a single document, and do not capture dependencies or knowledge that span across documents. In this work, we propose LinkBERT, an LM pretraining method that leverages links between documents, e.g., hyperlinks. Given a text corpus, we view it as a graph of documents and create LM inputs by placing linked documents in the same context. We then pretrain the LM with two joint self-supervised objectives: masked language modeling and our new proposal, document relation prediction. We show that LinkBERT outperforms BERT on various downstream tasks across two domains: the general domain (pretrained on Wikipedia with hyperlinks) and biomedical domain (pretrained on PubMed with citation links). LinkBERT is especially effective for multi-hop reasoning and few-shot QA (+5% absolute improvement on HotpotQA and TriviaQA), and our biomedical LinkBERT sets new states of the art on various BioNLP tasks (+7% on BioASQ and USMLE). 
    more » « less
  5. Abstract

    Advances in both hardware and software are enabling rapid proliferation of in situ plankton imaging methods, requiring more effective machine learning approaches to image classification. Deep Learning methods, such as convolutional neural networks (CNNs), show marked improvement over traditional feature‐based supervised machine learning algorithms, but require careful optimization of hyperparameters and adequate training sets. Here, we document some best practices in applying CNNs to zooplankton and marine snow images and note where our results differ from contemporary Deep Learning findings in other domains. We boost the performance of CNN classifiers by incorporating metadata of different types and illustrate how to assimilate metadata beyond simple concatenation. We utilize both geotemporal (e.g., sample depth, location, time of day) and hydrographic (e.g., temperature, salinity, chlorophylla) metadata and show that either type by itself, or both combined, can substantially reduce error rates. Incorporation of context metadata also boosts performance of the feature‐based classifiers we evaluated: Random Forest, Extremely Randomized Trees, Gradient Boosted Classifier, Support Vector Machines, and Multilayer Perceptron. For our assessments, we use an original data set of 350,000 in situ images (roughly 50% marine snow and 50% non‐snow sorted into 26 categories) from a novel in situZooglider. We document asymptotically increasing performance with more computationally intensive techniques, such as substantially deeper networks and artificially augmented data sets. Our best model achieves 92.3% accuracy with our 27‐class data set. We provide guidance for further refinements that are likely to provide additional gains in classifier accuracy.

     
    more » « less