Low molecular weight hydrogels are made of small molecules that aggregate via noncovalent interactions. Here, comprehensive characterization of the physical and chemical properties of hydrogels made from thioglycolipids of the disaccharides lactose and cellobiose with simple alkyl chains is reported. While thiolactoside hydrogels are robust, thiocellobioside gels are metastable, precipitating over time into fibrous crystals that can be entangled to create pseudo-hydrogels. Rheology confirms the viscoelastic solid nature of these hydrogels with storage moduli ranging from 10–600 kPa. Additionally, thiolactoside hydrogels are thixotropic which is a desirable property for many potential applications. Freeze-fracture electron microscopy of xerogels shows layers of stacked sheets that are entangled into networks. These structures are unique compared to the fibers or ribbons typically reported for hydrogels. Differential scanning calorimetry provides gel-to-liquid phase transition temperatures ranging from 30 to 80 °C. Prodan fluorescence spectroscopy allows assignment of phase transitions in the gels and other lyotropic phases of high concentration samples. Phase diagrams are estimated for all hydrogels at 1–10 wt% from 5 to ≥ 80 °C. These hydrogels represent a series of interesting materials with unique properties that make them attractive for numerous potential applications.
more »
« less
Multivascular networks and functional intravascular topologies within biocompatible hydrogels
Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels by using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels, produced in minutes, comprising efficient intravascular 3D fluid mixers and functional bicuspid valves. We further elaborate entangled vascular networks from space-filling mathematical topologies and explore the oxygenation and flow of human red blood cells during tidal ventilation and distension of a proximate airway. In addition, we deploy structured biodegradable hydrogel carriers in a rodent model of chronic liver injury to highlight the potential translational utility of this materials innovation.
more »
« less
- Award ID(s):
- 1728239
- PAR ID:
- 10112114
- Date Published:
- Journal Name:
- Science
- Volume:
- 364
- Issue:
- 6439
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 458 to 464
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Adhesive hydrogels with tunable mechanical properties and strong adhesion to wet, dynamic tissues have emerged as promising materials for tissue repair, with potential applications in wound closure, hemorrhage control, and surgical adhesives. This review highlights the key design principles, material classifications, and recent advances in adhesive hydrogels designed for vascular repair. The limitations of existing adhesive hydrogels, including insufficient mechanical durability, suboptimal biocompatibility, and challenges in targeted delivery, are critically evaluated. Furthermore, innovative strategies—such as incorporating self-healing capabilities, developing stimuli-responsive systems, integrating functional nanocomposites, and employing advanced fabrication techniques like 3D bioprinting—are discussed to enhance adhesion, mechanical stability, and vascular tissue regeneration. While significant progress has been made, further research and optimization are necessary to advance these materials toward clinical translation, offering a versatile and minimally invasive alternative to traditional vascular repair techniques.more » « less
-
In vivo , microvasculature provides oxygen, nutrients, and soluble factors necessary for cell survival and function. The highly tortuous, densely-packed, and interconnected three-dimensional (3D) architecture of microvasculature ensures that cells receive these crucial components. The ability to duplicate microvascular architecture in tissue-engineered models could provide a means to generate large-volume constructs as well as advanced microphysiological systems. Similarly, the ability to induce realistic flow in engineered microvasculature is crucial to recapitulating in vivo -like flow and transport. Advanced biofabrication techniques are capable of generating 3D, biomimetic microfluidic networks in hydrogels, however, these models can exhibit systemic aberrations in flow due to incorrect boundary conditions. To overcome this problem, we developed an automated method for generating synthetic augmented channels that induce the desired flow properties within three-dimensional microfluidic networks. These augmented inlets and outlets enforce the appropriate boundary conditions for achieving specified flow properties and create a three-dimensional output useful for image-guided fabrication techniques to create biomimetic microvascular networks.more » « less
-
Abstract Mechanical cues from the extracellular matrix (ECM) regulate vascular endothelial cell (EC) morphology and function. Since naturally derived ECMs are viscoelastic, cells respond to viscoelastic matrices that exhibit stress relaxation, in which a cell‐applied force results in matrix remodeling. To decouple the effects of stress relaxation rate from substrate stiffness on EC behavior, we engineered elastin‐like protein (ELP) hydrogels in which dynamic covalent chemistry (DCC) was used to crosslink hydrazine‐modified ELP (ELP‐HYD) and aldehyde/benzaldehyde‐modified polyethylene glycol (PEG‐ALD/PEG‐BZA). The reversible DCC crosslinks in ELP‐PEG hydrogels create a matrix with independently tunable stiffness and stress relaxation rate. By formulating fast‐relaxing or slow‐relaxing hydrogels with a range of stiffness (500–3300 Pa), we examined the effect of these mechanical properties on EC spreading, proliferation, vascular sprouting, and vascularization. The results show that both stress relaxation rate and stiffness modulate endothelial spreading on two‐dimensional substrates, on which ECs exhibited greater cell spreading on fast‐relaxing hydrogels up through 3 days, compared with slow‐relaxing hydrogels at the same stiffness. In three‐dimensional hydrogels encapsulating ECs and fibroblasts in coculture, the fast‐relaxing, low‐stiffness hydrogels produced the widest vascular sprouts, a measure of vessel maturity. This finding was validated in a murine subcutaneous implantation model, in which the fast‐relaxing, low‐stiffness hydrogel produced significantly more vascularization compared with the slow‐relaxing, low‐stiffness hydrogel. Together, these results suggest that both stress relaxation rate and stiffness modulate endothelial behavior, and that the fast‐relaxing, low‐stiffness hydrogels supported the highest capillary density in vivo.more » « less
-
Abstract Hydrogels with particulates, including proteins, drugs, nanoparticles, and cells, enable the development of new and innovative biomaterials. Precise control of the spatial distribution of these particulates is crucial to produce advanced biomaterials. Thus, there is a high demand for manufacturing methods for particle-laden hydrogels. In this context, 3D printing of hydrogels is emerging as a promising method to create numerous innovative biomaterials. Among the 3D printing methods, inkjet printing, so-called drop-on-demand (DOD) printing, stands out for its ability to construct biomaterials with superior spatial resolutions. However, its printing processes are still designed by trial and error due to a limited understanding of the ink behavior during the printing processes. This review discusses the current understanding of transport processes and hydrogel behaviors during inkjet printing for particulate-laden hydrogels. Specifically, we review the transport processes of water and particulates within hydrogel during ink formulation, jetting, and curing. Additionally, we examine current inkjet printing applications in fabricating engineered tissues, drug delivery devices, and advanced bioelectronics components. Finally, the challenges and opportunities for next-generation inkjet printing are also discussed. Graphical Abstractmore » « less
An official website of the United States government

