skip to main content


Title: Compact Representation of Uncertainty in Clustering
For many classic structured prediction problems, probability distributions over the dependent variables can be efficiently computed using widely-known algorithms and data structures (such as forward-backward, and its corresponding trellis for exact probability distributions in Markov models). However, we know of no previ- ous work studying efficient representations of exact distributions over clusterings. This paper presents definitions and proofs for a dynamic-programming inference procedure that computes the partition function, the marginal probability of a cluster, and the MAP clustering—all exactly. Rather than the N th Bell number, these exact solutions take time and space proportional to the substantially smaller powerset of N . Indeed, we improve upon the time complexity of the algorithm introduced by Kohonen and Corander [11] for this problem by a factor of N. While still large, this previously unknown result is intellectually interesting in its own right, makes feasible exact inference for important real-world small data applications (such as medicine), and provides a natural stepping stone towards sparse-trellis approximations that enable further scalability (which we also explore). In experi- ments, we demonstrate the superiority of our approach over approximate methods in analyzing real-world gene expression data used in cancer treatment.  more » « less
Award ID(s):
1637536
NSF-PAR ID:
10112136
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018
Page Range / eLocation ID:
8639--8649
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recursive calls over recursive data are useful for generating probability distributions, and probabilistic programming allows computations over these distributions to be expressed in a modular and intuitive way. Exact inference is also useful, but unfortunately, existing probabilistic programming languages do not perform exact inference on recursive calls over recursive data, forcing programmers to code many applications manually. We introduce a probabilistic language in which a wide variety of recursion can be expressed naturally, and inference carried out exactly. For instance, probabilistic pushdown automata and their generalizations are easy to express, and polynomial-time parsing algorithms for them are derived automatically. We eliminate recursive data types using program transformations related to defunctionalization and refunctionalization. These transformations are assured correct by a linear type system, and a successful choice of transformations, if there is one, is guaranteed to be found by a greedy algorithm. 
    more » « less
  2. We generalize the spatial and subset scan statistics from the single to the multiple subset case. The two main approaches to defining the log-likelihood ratio statistic in the single subset case—the population-based and expectation-based scan statistics—are considered, leading to risk partitioning and multiple cluster detection scan statistics, respectively. We show that, for distributions in a separable exponential family, the risk partitioning scan statistic can be expressed as a scaled f-divergence of the normalized count and baseline vectors, and the multiple cluster detection scan statistic as a sum of scaled Bregman divergences. In either case, however, maximization of the scan statistic by exhaustive search over all partitionings of the data requires exponential time. To make this optimization computationally feasible, we prove sufficient conditions under which the optimal partitioning is guaranteed to be consecutive. This Consecutive Partitions Property generalizes the linear-time subset scanning property from two partitions (the detected subset and the remaining data elements) to the multiple partition case. While the number of consecutive partitionings of n elements into t partitions scales as O(n^(t−1)), making it computationally expensive for large t, we present a dynamic programming approach which identifies the optimal consecutive partitioning in O(n^2 t) time, thus allowing for the exact and efficient solution of large-scale risk partitioning and multiple cluster detection problems. Finally, we demonstrate the detection performance and practical utility of partition scan statistics using simulated and real-world data. Supplementary materials for this article are available online. 
    more » « less
  3. One of the primary challenges in graphical models is inference, or re-constructing a marginal probability from the graphical model’s factorized representation. While tractable for some graphs, the cost of inference grows exponentially with the graphical model’s complexity, necessitating approximation for more complex graphs. For interactive applications, latency is the dominant concern, making approximate inference the only feasible option. Unfortunately, approximate inference can be wasteful for interactive applications, as exact inference can still converge faster, even for moderately complex inference problems. In this paper, we propose a new family of convergent inference algorithms (CIAs) that bridge the gap between approximations and exact solutions, providing early, incrementally improving approximations that become exact after a finite period of time. We describe two specific CIAs based on a cryptographic technique called linear congruential generators, including a novel incremental join algorithm for dense relations called Leaky Joins. We conclude with experiments that demonstrate the utility of Leaky Joins for convergent inference: On both synthetic and real-world probabilistic graphical models, Leaky Joins converge to exact marginal probabilities almost as fast as state of the art exact inference algorithms, while simultaneously achieving approximations that are almost as good as state of the art approximation algorithms. 
    more » « less
  4. null (Ed.)
    Abstract Background Identification of motifs and quantification of their occurrences are important for the study of genetic diseases, gene evolution, transcription sites, and other biological mechanisms. Exact formulae for estimating count distributions of motifs under Markovian assumptions have high computational complexity and are impractical to be used on large motif sets. Approximated formulae, e.g. based on compound Poisson, are faster, but reliable p value calculation remains challenging. Here, we introduce ‘motif_prob’, a fast implementation of an exact formula for motif count distribution through progressive approximation with arbitrary precision. Our implementation speeds up the exact calculation, usually impractical, making it feasible and posit to substitute currently employed heuristics. Results We implement motif_prob in both Perl and C+ + languages, using an efficient error-bound iterative process for the exact formula, providing comparison with state-of-the-art tools (e.g. MoSDi) in terms of precision, run time benchmarks, along with a real-world use case on bacterial motif characterization. Our software is able to process a million of motifs (13–31 bases) over genome lengths of 5 million bases within the minute on a regular laptop, and the run times for both the Perl and C+ + code are several orders of magnitude smaller (50–1000× faster) than MoSDi, even when using their fast compound Poisson approximation (60–120× faster). In the real-world use cases, we first show the consistency of motif_prob with MoSDi, and then how the p-value quantification is crucial for enrichment quantification when bacteria have different GC content, using motifs found in antimicrobial resistance genes. The software and the code sources are available under the MIT license at https://github.com/DataIntellSystLab/motif_prob . Conclusions The motif_prob software is a multi-platform and efficient open source solution for calculating exact frequency distributions of motifs. It can be integrated with motif discovery/characterization tools for quantifying enrichment and deviation from expected frequency ranges with exact p values, without loss in data processing efficiency. 
    more » « less
  5. Failure time data of fielded systems are usually obtained from the actual users of the systems. Due to various operational preferences and/or technical obstacles, a large proportion of field data are collected as aggregate data instead of the exact failure times of individual units. The challenge of using such data is that the obtained information is more concise but less precise in comparison to using individual failure times. The most significant needs in modeling aggregate failure time data are the selection of an appropriate probability distribution and the development of a statistical inference procedure capable of handling data aggregation. Although some probability distributions, such as the Gamma and Inverse Gaussian distributions, have well-known closed-form expressions for the probability density function for aggregate data, the use of such distributions limits the applications in field reliability estimation. For reliability practitioners, it would be invaluable to use a robust approach to handle aggregate failure time data without being limited to a small number of probability distributions. This paper studies the application of phase-type (PH) distribution as a candidate for modeling aggregate failure time data. An expectation-maximization algorithm is developed to obtain the maximum likelihood estimates of model parameters, and the confidence interval for the reliability estimate is also obtained. The simulation and numerical studies show that the robust approach is quite powerful because of the high capability of PH distribution in mimicking a variety of probability distributions. In the area of reliability engineering, there is limited work on modeling aggregate data for field reliability estimation. The analytical and statistical inference methods described in this work provide a robust tool for analyzing aggregate failure time data for the first time. 
    more » « less