skip to main content

Title: Elucidating Branching Topology and Branch Lengths in Star-Branched Polymers by Tandem Mass Spectrometry
Tandem mass spectrometry (MS2) has been employed to elucidate the topology and branching architecture of star-branched polyethers. The polymers were ionized by matrix-assisted laser desorption/ionization (MALDI) to positive ions and dissociated after leaving the ion source via laser-induced fragmentation. The bond scissions caused under MALDI-MS2 conditions occur preferentially near the core-branch joining points due to energetically favorable homolytic and heterolytic bond cleavages near the core and release of steric strain and/or reduction of crowding. This unique fragmentation mode detaches complete arms from the core generating fragment ion series at the expected molecular weight of each branch. The number of fragment ion distributions observed combined with their mass-to-charge ratios permit conclusive determination of the degree of branching and the corresponding branch lengths, as demonstrated for differently branched homo- and mikto-arm polyether stars synthesized via azide-alkyne click chemistry. The results of this study underscore the utility of MS2 for the characterization of branching architecture and branch lengths of (co)polymers with two or more linear chains attached to a functionalized central core.
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of The American Society for Mass Spectrometry
Sponsoring Org:
National Science Foundation
More Like this
  1. Polyether based side-chain liquid crystalline (SCLC) copolymers with distinct microstructures were prepared using living anionic polymerization techniques. The composition, end groups, purity, and sequence of the resulting copolymers were elucidated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and tandem mass spectrometry (MS/MS). MALDI-MS analysis confirmed the presence of (CH3)3CO– and –H end groups at the initiating (α) and terminating (ω) chain end, respectively, and allowed determination of the molecular weight distribution and comonomer content of the copolymers. The comonomer positions along the polymer chain were identified by MS/MS, from the fragments formed via C–O and C–C bond cleavages in the polyether backbone. Random and block architectures could readily be distinguished by the contiguous fragment series formed in these reactions. Notably, backbone C–C bond scission was promoted by a radical formed via initial C–O bond cleavage in the mesogenic side chain. This result documents the ability of a properly substituted side chain to induce sequence indicative bond cleavages in the polyether backbone.
  2. The valence photoionization of light and deuterated methanol dimers was studied by imaging photoelectron photoion coincidence spectroscopy in the 10.00–10.35 eV photon energy range. Methanol clusters were generated in a rich methanol beam in nitrogen after expansion into vacuum. They generally photoionize dissociatively to protonated methanol cluster cations, (CH 3 OH) n H + . However, the stable dimer parent ion (CH 3 OH) 2 + is readily detected below the dissociation threshold to yield the dominant CH 3 OH 2 + fragment ion. In addition to protonated methanol, we could also detect the water- and methyl-loss fragment ions of the methanol dimer cation for the first time. These newly revealed fragmentation channels are slow and cannot compete with protonated methanol cation formation at higher internal energies. In fact, the water- and methyl-loss fragment ions appear together and disappear at a ca. 150 meV higher energy in the breakdown diagram. Experiments with selectively deuterated methanol samples showed H scrambling involving two hydroxyl and one methyl hydrogens prior to protonated methanol formation. These insights guided the potential energy surface exploration to rationalize the dissociative photoionization mechanism. The potential energy surface was further validated by a statistical model including isotope effects tomore »fit the experiment for the light and the perdeuterated methanol dimers simultaneously. The (CH 3 OH) 2 + parent ion dissociates via five parallel channels at low internal energies. The loss of both CH 2 OH and CH 3 O neutral fragments leads to protonated methanol. However, the latter, direct dissociation channel is energetically forbidden at low energies. Instead, an isomerization transition state is followed by proton transfer from a methyl group, which leads to the CH 3 (H)OH + ⋯CH 2 OH ion, the precursor to the CH 2 OH-, H 2 O-, and CH 3 -loss fragments after further isomerization steps, in part by a roaming mechanism. Water loss yields the ethanol cation, and two paths are proposed to account for m/z 49 fragment ions after CH 3 loss. The roaming pathways are quickly outcompeted by hydrogen bond breaking to yield CH 3 OH 2 + , which explains the dominance of the protonated methanol fragment ion in the mass spectrum.« less
  3. Abstract

    Herein, phase transitions of a class of thermally-responsive polymers, namely a homopolymer, diblock, and triblock copolymer, were studied to gain mechanistic insight into nanoscale assembly dynamics via variable temperature liquid-cell transmission electron microscopy (VT-LCTEM) correlated with variable temperature small angle X-ray scattering (VT-SAXS). We study thermoresponsive poly(diethylene glycol methyl ether methacrylate) (PDEGMA)-based block copolymers and mitigate sample damage by screening electron flux and solvent conditions during LCTEM and by evaluating polymer survival viapost-mortemmatrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). Our multimodal approach, utilizing VT-LCTEM with MS validation and VT-SAXS, is generalizable across polymeric systems and can be used to directly image solvated nanoscale structures and thermally-induced transitions. Our strategy of correlating VT-SAXS with VT-LCTEM provided direct insight into transient nanoscale intermediates formed during the thermally-triggered morphological transformation of a PDEGMA-based triblock. Notably, we observed the temperature-triggered formation and slow relaxation of core-shell particles with complex microphase separation in the core by both VT-SAXS and VT-LCTEM.

  4. We report synthesis of temperature-responsive linear and star poly(2-ureido aminoethyl methacrylates) (PUEMs) of matched molecular weights, their phase transitions in aqueous solutions and interactions with hydrogen bonding and hydrophobic small molecules. PUEMs with number of arms up to 8 were synthesized via the activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) technique using the core-first approach. The degrees of branching were determined using gel permeation chromatography (GPC) equipped with the multi-angle laser light scattering and viscometry detectors. The polymer molecular architecture had a neglectable effect on the upper critical solution temperature (UCST) behavior in aqueous solutions, while the presence of a strong hydrogen-bonded acceptor – dimethyl sulfoxide (DMSO) – suppressed the transition temperature for both linear and star UCST polymers. Importantly, star PUEMs showed an enhanced ability of trapping model drug molecules – proflavine and pyrene. In particular, an increase in polymer branching led to 4.5-fold more efficient proflavine trapping and stronger binding of pyrene molecules within the hydrophobic domains of star polymers below their UCST. The trapped molecules could be then fully released from the star polymers upon temperature increase, demonstrating potential for controlled delivery applications.
  5. Chromatographic retention times and mass spectrometral fragmentation of per- and polyfluoroalkyl substances (PFASs) standards were determined using the optimized parameters obtained for liquid chromatography with tandem high-resolution mass spectrometry (LC-HRMS) analysis. Characteristic fragment ions obtained at various collision energies (MS2 fragmentation) were used for structural elucidation to predict the identities of newly discovered (emerging) PFASs detected in environmental samples. Moreover, the COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS) was used to calculate the octanol-water partition coefficients (Kow) and mean isotropic polarizabilities of known PFASs, and the values were plotted against their chromatographic retention factors (k) to obtain a multivariable regression model that can be used to predict k values of unknown PFASs. Retention factor values of different structural isomers of the unknown PFASs were calculated and compared to the experimental k. For all the unknown PFASs, the predicted k value for the isomer that matches the corresponding MS2 fragmentation was found to be within 5% of the experimentally measured k value. This study demonstrates the applicability of a simple approach that combines the use of computationally-derived log Kow and polarizabilities, experimentally-determined k values, together with observed MS2 fragmentation patterns, in assigning the structures of emerging PFASs at environmentally relevant conditionsmore »when no reference standards are available.« less