skip to main content


Title: Between a rock and a soft place: surfgrass colonizes sediments without attachment to rock
Award ID(s):
1635716 1600230
NSF-PAR ID:
10112508
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Ecology
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrogen is a rapidly diffusing monovalent cation in nominally anhydrous minerals (NAMs, such as olivine, orthopyroxene, and clinopyroxene), which is potentially re-equilibrated during silicate melt-rock and aqueous fluid-rock interactions in massif and abyssal peridotites. We apply a 3D numerical diffusion modeling technique to provide first-order timescales of complete hydrogen re-equilibration in olivine, clinopyroxene, and orthopyroxene over the temperature range 600-1200°C. Model crystals are 1-3 mm along the c-axis and utilize H+ diffusion coefficients appropriate for Fe-bearing systems. Two sets of models were run with different boundary compositions: 1) “low-H models” are constrained by mineral-melt equilibrium partitioning with a basaltic melt that has 0.75 wt% H2O and 2) “high-H models,” which utilize the upper end of the estimated range of mantle water solubility for each phase. Both sets of models yield re-equilibration timescales that are identical and are fast for all phases at a given temperature. These timescales have strong log-linear trends as a function of temperature (R2 from 0.97 to 0.99) that can be used to calculate expected re-equilibration time at a given temperature and grain size. At the high end of the model temperatures (1000-1200°C), H+ completely re-equilibrates in olivine, orthopyroxene, and clinopyroxene within minutes to hours, consistent with previous studies. These short timescales indicate that xenolith NAM mantle water contents are likely to be overprinted prior to eruption. The models also resolve the decoupled water-trace element relationship in Southwest Indian Ridge peridotites, in which peridotite REE abundances are reproduced by partial melting models whereas the relatively high NAM H2O contents require later re-equilibration with melt. At temperatures of 600-800°C, which correspond to conditions of hydrothermal alteration of pyroxene to amphibole and talc, H+ re-equilibration typically occurs over a range of timescales spanning days to years. These durations are well within existing estimates for the duration of fluid flow in oceanic hydrothermal systems, suggesting that peridotite NAM water contents are susceptible to diffusive overprinting during higher temperature hydrothermal alteration. Thus, diffusion during aqueous fluid-rock interactions may also explain NAM H2O contents that are too high to reflect residues of melting. These relatively short timescales at low temperatures suggest that the origin of water contents measured in peridotite NAMs requires additional constraints on sample petrogenesis, including petrographic and trace element analyses. Our 3D model results also hint that H+ may diffuse appreciably during peridotite serpentinization, but diffusion coefficients at low temperature are unconstrained and additional experimental investigations are needed. 
    more » « less
  2. Abstract Caves and rock shelters contribute important records to local, regional and sub-continental reconstructions of environment and climate change through the southern African Quaternary. Against a backdrop of pronounced climate change, the archaeological record of the Marine Isotope Stage 6 to 1 period in southern Africa documents a remarkable time in the behavioural and technological evolution of anatomically modern humans. Significant evidence of this evolution is represented in diverse components of the sedimentary record in caves and rock shelters in the region. We present a catalogue of published caves and rock shelters in southern Africa that preserve temporally-relevant clastic and chemical palaeoclimatic proxies in order to: (1) facilitate the integration of cave and rock shelter sedimentary data into broader, regional chronostratigraphically-correlated palaeoclimatic sequences; and (2) identify possible areas and proxies that require focused research in the future. To demonstrate the complexity of the Marine Isotope Stage 6 to 1 stratigraphic record and use of palaeoenvironmental proxies, we present three case studies representing interior and coastal contexts: Border Cave, Klasies River Mouth and Pinnacle Point. These examples aptly demonstrate the challenges of these contexts, but also the opportunities for palaeoenvironmental research in southern Africa when conducted through integrated, multidisciplinary approaches. Published records of palaeoenvironmental research from cave and rock shelter sequences in southern Africa are heavily biased to the South African coastal areas and the record is temporally and spatially fragmented. However, there are interesting patterns in the chronostratigraphic record and in the distribution of sites within the context of the geology and vegetation ecology of southern Africa that require further exploration. There are also promising techniques in stable isotope analysis that can be applied to abundant sedimentary components found in the region’s caves and rock shelters, and in its museums. 
    more » « less