skip to main content


Title: Clamping Force Effects on the Performance of Mechanically Attached Piezoelectric Transducers for Impedance-Based NDE
Impedance-based non-destructive evaluation (NDE) constitutes a generalization of structural health monitoring (SHM), where comparisons between known-healthy reference structures and potentially-defective structures are used to identify damage. The quantity considered by impedance-based NDE is the electrical impedance of a piezoelectric element bonded to the part under test, which is linked to the dynamic vibrational response of the part under test through electromechanical coupling. In this work, the piezoelectric element is not bonded directly to the part under test, but rather to a c-shaped clamp, which is then mechanically attached to the part under test. Under this attachment condition, the effect of clamping force on the sensitivity of the impedance-based evaluation is investigated for machined steel blocks with varying levels of damage severity. The highest clamping force tested (600 lb, 2670 N) was the only condition exhibiting increasing damage metric values with increasing damage severity in the parts under test, suggesting that higher clamping force increases sensitivity to damage.  more » « less
Award ID(s):
1635356
NSF-PAR ID:
10112513
Author(s) / Creator(s):
Date Published:
Journal Name:
IMAC XXXVII A Conference and Exposition on Structural Dynamics
Volume:
7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Additive Manufacturing (AM) allows increased complexity which poses challenges to quality-control (QC) and non-destructive evaluation (NDE) of manufactured parts. The lack of simple, reliable, and inexpensive methods for NDE of AM parts is a significant obstacle to wider adoption of AM parts. Electromechanical impedance measurements have been investigated as a means to detect manufacturing defects in AM parts. Impedance-based NDE utilizes piezoelectric wafers as collocated sensors and actuators. Taking advantage of the coupled electromechanical characteristics of piezoelectric materials, the mechanical characteristics of the part under test can be inferred from the electrical impedance of the piezoelectric wafer. Previous efforts have used piezoelectric wafers bonded directly to the part under test, which imposes several challenges regarding the applicability and robustness of the technique. This paper investigates the use of an instrumented clamp as a solution for measuring the electromechanical impedance of the part under test. The effectiveness of this approach in detecting manufacturing defects is compared to directly bonded wafers. 
    more » « less
  2. Additive Manufacturing (AM) allows increased complexity which poses challenges to quality-control (QC) and non-destructive evaluation (NDE) of manufactured parts. The lack of simple, reliable, and inexpensive methods for NDE of AM parts is a significant obstacle to wider adoption of AM parts. Electromechanical impedance measurements have been investigated as a means to detect manufacturing defects in AM parts. Impedance-based NDE utilizes piezoelectric wafers as collocated sensors and actuators. Taking advantage of the coupled electromechanical characteristics of piezoelectric materials, the mechanical characteristics of the part under test can be inferred from the electrical impedance of the piezoelectric wafer. Previous efforts have used piezoelectric wafers bonded directly to the part under test, which imposes several challenges regarding the applicability and robustness of the technique. This paper investigates the use of an instrumented clamp as a solution for measuring the electromechanical impedance of the part under test. The effectiveness of this approach in detecting manufacturing defects is compared to directly bonded wafers. 
    more » « less
  3. The flexibility offered by additive manufacturing (AM) technologies to fabricate complex geometries poses several challenges to non-destructive evaluation (NDE) and quality control (QC) techniques. Existing NDE and QC techniques are not optimized for AM processes, materials, or parts. Such lack of reliable means to verify and qualify AM parts is a significant barrier to further industrial adoption of AM technologies. Electromechanical impedance measurements have been recently introduced as an alternative solution to detect anomalies in AM parts. With this approach, piezoelectric wafers bonded to the part under test are utilized as collocated sensors and actuators. Due to the coupled electromechanical characteristics of piezoelectric materials, the measured electrical impedance of the piezoelectric wafer depends on the mechanical impedance of the part under test, allowing build defects to be detected. This paper investigates the effectiveness of impedance-based NDE approach to detect internal porosity in AM parts. This type of build defects is uniquely challenging as voids are normally embedded within the structure and filled with unhardened model or supporting material. The impact of internal voids on the electromechanical impedance of AM parts is studied at several frequency ranges. 
    more » « less
  4. Abstract

    The geographical separation between various supply chain participants creates challenges in ensuring the integrity of the parts under circulation. These supply chains have to regularly deal with counterfeiting, a significant problem with an estimated value equivalent to at least the tenth-largest global economy. Industries are constantly upgrading their anti-counterfeiting methods to tackle this ever-increasing issue. Traditionally, a physical or cyber-physical part identifier is used to assert the integrity and identity of parts moving through the supply chain. For this work, we propose the use of electromechanical impedance measurements to generate a robust, unique part identifier linked to physical attributes. Electromechanical impedance measurements have been employed as a basis for non-destructive evaluation techniques in damage detection and health monitoring. We propose using these high-frequency measurements recorded through bonded piezoceramic transducers to help uniquely identify parts.

    For this study, identical piezoceramic transducers (cut from the same wafer to minimize variations) were mounted on identically manufactured specimens. The only distinction between these specimens was the physical variation introduced during manufacturing and instrumentation. Multiple measurements for each specimen were recorded. A unique part identification methodology based on linear projection was created using these measurements. Lastly, a leave-one-out-study was performed to uniquely identify the left-out specimen. This was used to validate the part identification methodology. This paper introduces the use of electromechanical impedance measurements (widely adopted for damage detection) as a unique part identifier, with a basic experimental implementation of the proposed mechanism on identically manufactured parts. The paper also highlights some challenges and future work needed to make this methodology robust and adaptable.

     
    more » « less
  5. All-solid-state batteries (ASSBs) have garnered increasing attention due to the enhanced safety, featuring nonflammable solid electrolytes as well as the potential to achieve high energy density. 1 The advancement of the ASSBs is expected to provide, arguably, the most straightforward path towards practical, high-energy, and rechargeable batteries based on metallic anodes. 1 However, the sluggish ion transmission at the cathode-electrolyte (solid/solid) interface would result in the high resistant at the contact and limit the practical implementation of these all solid-state materials in real world batteries. 2 Several methods were suggested to enhance the kinetic condition of the ion migration between the cathode and the solid electrolyte (SE). 3 A composite strategy that mixes active materials and SEs for the cathode is a general way to decrease the ion transmission barrier at the cathode-electrolyte interface. 3 The active material concentration in the cathode is reduced as much as the SE portion increases by which the energy density of the ASSB is restricted. In addition, the mixing approach generally accompanies lattice mismatches between the cathode active materials and the SE, thus providing only limited improvements, which is imputed by random contacts between the cathode active materials and the SE during the mixing process. Implementing high-pressure for the electrode and electrolyte of ASSB in the assembling process has been verified is a but effective way to boost the ion transmission ability between the cathode active materials and the SE by decreasing the grain boundary impedance. Whereas the short-circuit of the battery would be induced by the mechanical deformation of the electrolyte under high pressure. 4 Herein, we demonstrate a novel way to address the ion transmission problem at the cathode-electrolyte interface in ASSBs. Starting from the cathode configuration, the finite element method (FEM) was employed to evaluate the current concentration and the distribution of the space charge layer at the cathode-electrolyte interface. Hierarchical three-dimensional (HTD) structures are found to have a higher Li + transfer number (t Li+ ), fewer free anions, and the weaker space-charge layer at the cathode-electrolyte interface in the resulting FEM simulation. To take advantage of the HTD structure, stereolithography is adopted as a manufacturing technique and single-crystalline Ni-rich (SCN) materials are selected as the active materials. Next, the manufactured HTD cathode is sintered at 600 °C in an N 2 atmosphere for the carbonization of the resin, which induces sufficient electronic conductivity for the cathode. Then, the gel-like Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 (LATP) precursor is synthesized and filled into the voids of the HTD structure cathode sufficiently. And the filled HTD structure cathodes are sintered at 900 °C to achieve the crystallization of the LATP gel. Scanning transmission electron microscopy (STEM) is used to unveil the morphology of the cathode-electrolyte interface between the sintered HTD cathode and the in-situ generated electrolyte (LATP). A transient phase has been found generated at the interface and matched with both lattices of the SCN and the SE, accelerating the transmission of the Li-ions, which is further verified by density functional theory calculations. In addition, Electron Energy Loss Spectroscopy demonstrates the preserved interface between HTD cathode and SEs. Atomic force microscopy is employed to measure the potential image of the cross-sectional interface by the peak force tapping mode. The average potential of modified samples is lower than the sample that mix SCN and SEs simply in the 2D planar structure, which confirms a weakened space charge layer by the enhanced contact capability as well as the ion transmission ability. To see if the demonstrated method is universally applicable, LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) is selected as the cathode active material and manufactured in the same way as the SCN. The HTD cathode based on NCM811 exhibits higher electrochemical performance compared with the reference sample based on the 2D planar mixing-type cathode. We believe such a demonstrated universal strategy provides a new guideline to engineer the cathode/electrolyte interface by revolutionizing electrode structures that can be applicable to all-solid-state batteries. Figure 1. Schematic of comparing of traditional 2D planar cathode and HTD cathode in ASSB Tikekar, M. D. , et al. , Nature Energy (2016) 1 (9), 16114 Banerjee, A. , et al. , Chem Rev (2020) 120 (14), 6878 Chen, R. , et al. , Chem Rev (2020) 120 (14), 6820 Cheng, X. , et al. , Advanced Energy Materials (2018) 8 (7) Figure 1 
    more » « less