skip to main content


Title: Thickness scaling of ferroelectricity in BiFeO 3 by tomographic atomic force microscopy
Nanometer-scale 3D imaging of materials properties is critical for understanding equilibrium states in electronic materials, as well as for optimization of device performance and reliability, even though such capabilities remain a substantial experimental challenge. Tomographic atomic force microscopy (TAFM) is presented as a subtractive scanning probe technique for high-resolution, 3D ferroelectric property measurements. Volumetric property resolution below 315 nm 3 , as well as unit-cell-scale vertical material removal, are demonstrated. Specifically, TAFM is applied to investigate the size dependence of ferroelectricity in the room-temperature multiferroic BiFeO 3 across two decades of thickness to below 1 nm. TAFM enables volumetric imaging of ferroelectric domains in BiFeO 3 with a significant improvement in spatial resolution compared with existing domain tomography techniques. We additionally employ TAFM for direct, thickness-dependent measurements of the local spontaneous polarization and ferroelectric coercive field in BiFeO 3 . The thickness-resolved ferroelectric properties strongly correlate with cross-sectional transmission electron microscopy (TEM), Landau–Ginzburg–Devonshire phenomenological theory, and the semiempirical Kay–Dunn scaling law for ferroelectric coercive fields. These results provide an unambiguous determination of a stable and switchable polar state in BiFeO 3 to thicknesses below 5 nm. The accuracy and utility of these findings on finite size effects in ferroelectric and multiferroic materials more broadly exemplifies the potential for novel insight into nanoscale 3D property measurements via other variations of TAFM.  more » « less
Award ID(s):
1726862
NSF-PAR ID:
10112727
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
7
ISSN:
0027-8424
Page Range / eLocation ID:
2413 to 2418
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Controlling the growth of complex relaxor ferroelectric thin films and understanding the relationship between biaxial strain–structural domain characteristics are desirable for designing materials with a high electromechanical response. For this purpose, epitaxial thin films free of extended defects and secondary phases are urgently needed. Here, we used optimized growth parameters and target compositions to obtain epitaxial (40–45 nm) 0.67Pb(Mg 1/3 Nb 2/3 )O 3 –0.33PbTiO 3 /(20 nm) SrRuO 3 (PMN–33PT/SRO) heterostructures using pulsed-laser deposition (PLD) on singly terminated SrTiO 3 (STO) and ReScO 3 (RSO) substrates with Re = Dy, Tb, Gd, Sm, and Nd. In situ reflection high-energy electron diffraction (RHEED) and high-resolution X-ray diffraction (HR-XRD) analysis confirmed high-quality and single-phase thin films with smooth 2D surfaces. High-resolution scanning transmission electron microscopy (HR-STEM) revealed sharp interfaces and homogeneous strain further confirming the epitaxial cube-on-cube growth mode of the PMN–33PT/SRO heterostructures. The combined XRD reciprocal space maps (RSMs) and piezoresponse force microscopy (PFM) analysis revealed that the domain structure of the PMN–33PT heterostructures is sensitive to the applied compressive strain. From the RSM patterns, an evolution from a butterfly-shaped diffraction pattern for mildly strained PMN–33PT layers, which is evidence of stabilization of relaxor domains, to disc-shaped diffraction patterns for high compressive strains with a highly distorted tetragonal structure, is observed. The PFM amplitude and phase of the PMN–33PT thin films confirmed the relaxor-like for a strain state below ∼1.13%, while for higher compressive strain (∼1.9%) the irregularly shaped and poled ferroelectric domains were observed. Interestingly, the PFM phase hysteresis loops of the PMN–33PT heterostructures grown on the SSO substrates (strain state of ∼0.8%) exhibited an enhanced coercive field which is about two times larger than that of the thin films grown on GSO and NSO substrates. The obtained results show that epitaxial strain engineering could serve as an effective approach for tailoring and enhancing the functional properties in relaxor ferroelectrics. 
    more » « less
  2. Abstract

    We report on structural, microstructural, spectroscopic, dielectric, electrical, ferroelectric, ferromagnetic, and magnetodielectric coupling studies of BiFeO3–GdMnO3[(BFO)1–x–(GMO)x], wherexis the concentration of GdMnO3(x= 0.0, 0.025, 0.05, 0.075, 0.1, 0.15, and 0.2), nanocrystalline ceramic solid solutions by auto-combustion method. The analysis of structural property by Rietveld refinement shows the existence of morphotropic phase boundary (MPB) atx= 0.10, which is in agreement with the Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) studies. The average crystallite size obtained from the transmission electron microscopy (TEM) and x-ray line profile analysis was found to be 20–30 nm. The scanning electron micrographs show the uniform distribution of grains throughout the surface of the sample. The dielectric dispersion behavior fits very well with the Maxwell-Wagner model. The frequency dependent phase angle (θ) study shows the resistive nature of solid solutions at low frequency, whereas it shows capacitive behavior at higher frequencies. The temperature variation of dielectric permittivity shows dielectric anomaly at the magnetic phase transition temperature and shifting of the phase transition towards the lower temperature with increasing GMO concentration. The Nyquist plot showed the conduction mechanism is mostly dominated by grains and grain boundary resistances. The ac conductivity of all the samples follows the modified Jonscher model. The impedance and modulus spectroscopy show a non-Debye type relaxation mechanism which can be modeled using a constant phase element (CPE) in the equivalent circuit. The solid-solutions of BFO-GMO show enhanced ferromagnetic-like behavior at room temperature. The ferroelectric polarization measurement shows lossy ferroelectric behavior. The frequency dependent magnetocapacitance and magnetoimpedance clearly show the existence of intrinsic magnetodielectric coupling. The (BFO)1–x–(GMO)xsolid solutions withx= 0.025–0.075 show significantly higher magnetocapacitance and magnetoimpedance compared to the pure BFO.

     
    more » « less
  3. null (Ed.)
    A systematic study of (1− x )Pb(Fe 0.5 Nb 0.5 )O 3 – x BiFeO 3 ( x = 0–0.5) was performed by combining dielectric and electromechanical measurements with structural and microstructural characterization in order to investigate the strengthening of the relaxor properties when adding BiFeO 3 into Pb(Fe 0.5 Nb 0.5 )O 3 and forming a solid solution. Pb(Fe 0.5 Nb 0.5 )O 3 crystalizes in monoclinic symmetry exhibiting ferroelectric-like polarization versus electric field ( P–E ) hysteresis loop and sub-micron-sized ferroelectric domains. Adding BiFeO 3 to Pb(Fe 0.5 Nb 0.5 )O 3 favors a pseudocubic phase and a gradual strengthening of the relaxor behavior of the prepared ceramics. This is indicated by a broadening of the peak in temperature-dependent permittivity, narrowing of P–E hysteresis loops and decreasing size of ferroelectric domains resulting in polar nanodomains for x = 0.20 composition. The relaxor behavior was additionally confirmed by Vogel–Fulcher analysis. For the x ≥ 0.30 compositions, broad high-temperature anomalies are observed in dielectric permittivity versus temperature measurements in addition to the frequency-dispersive peak located close to room temperature. These samples also exhibit pinched P–E hysteresis loops. The observed pinching is most probably related to the reorganization of polar nanoregions under the electric field as shown by synchrotron X-ray diffraction measurements as well as by piezo-response force microscopy analysis, while in part affected by the presence of charged point defects and anti-ferroelectric order, as indicated from rapid cooling experiments and high-resolution transmission electron microscopy, respectively. 
    more » « less
  4. Abstract

    Originally based on phenomenological observations, the Janovec–Kay–Dunn (JKD) scaling law has been historically used to describe the dependence of the ferroelectric coercive fields (Ec) on a critical length scale of the material, wherein the film thickness (t) is considered the length scale, andEct−2/3. Here, for the first time, a JKD‐type scaling behavior is reported in an antiferroelectric material, using the ultra‐thin films of prototypical flourite‐structure binary oxide, zirconia. In these films, a decrease in the ZrO2layer thickness from 20 nm to 5.4 nm leads to an increase in critical fields for both nonpolar‐to‐polar (Ea), and polar‐to‐nonpolar (Ef) transitions, accompanied by a decrease in the average crystallite size, and an increase in the tetragonal distortion of the non‐polarP42/nmcground state structure. Notably, the ‐2/3 power law as in the JKD law holds when average crystallite size (d), measured from glancing‐incident X‐ray diffraction, is considered as the critical length scale—i.e.,Ea,Efd−2/3. First principles calculations suggest that the increase of tetragonality in thinner films contributes to an increase of the energy barrier for the transition from the non‐polar tetragonal ground state to the field‐induced polar orthorhombic phase, and in turn, an increase inEacritical fields. These results suggest a de‐stabilization of the ferroelectric phase with a decreasing thickness in antiferroelectric ZrO2, which is contrary to the observations in its fluorite‐structure ferroelectric counterparts. With the recent interests in utilizing antiferroelectricity for advanced semiconductor applications, our fundamental exposition of the thickness dependence of functional responses therein can accelerate the development of miniaturized, antiferroelectric electronic memory elements for the complementary metal‐oxide‐semiconductor based high‐volume manufacturing platforms.

     
    more » « less
  5. ConspectusGold nanoparticles (AuNPs) exhibit unique size- and shape-dependent properties not obtainable at the macroscale. Gold nanorods (AuNRs), with their morphology-dependent optical properties, ability to convert light to heat, and high surface-to-volume ratios, are of great interest for biosensing, medicine, and catalysis. While the gold core provides many fascinating properties, this Account focuses on AuNP soft surface coatings, which govern the interactions of nanoparticles with the local environments. Postmodification of AuNP surface chemistry can greatly alter NP colloidal stability, nano-bio interactions, and functionality. Polyelectrolyte coatings provide controllable surface-coating thickness and charge, which impact the composition of the acquired corona in biological settings. Covalent modification, in which covalently bound ligands replace the original capping layer, is often performed with thiols and disulfides due to their ability to replace native coatings. N-heterocyclic carbenes and looped peptides expand the possible functionalities of the ligand layer.The characterization of surface ligands bound to AuNPs, in terms of ligand density and dynamics, remains a challenge. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for understanding molecular structures and dynamics. Our recent NMR work on AuNPs demonstrated that NMR data were obtainable for ligands on NPs with diameters up to 25 nm for the first time. This was facilitated by the strong proton NMR signals of the trimethylammonium headgroup, which are present in a distinct regime from other ligand protons’ signals. Ligand density analyses showed that the smallest AuNPs (below 4 nm) had the largest ligand densities, yet spin–spin T2 measurements revealed that these smallest NPs also had the most mobile ligand headgroups. Molecular dynamics simulations were able to reconcile these seemingly contradictory results.While NMR spectroscopy provides ligand information averaged over many NPs, the ligand distribution on individual particles’ surfaces must also be probed to fully understand the surface coating. Taking advantage of improvements in electron energy loss spectroscopy (EELS) detectors employed with scanning transmission electron microscopy (STEM), a single-layer graphene substrate was used to calibrate the carbon K-edge EELS signal, allowing quantitative imaging of the carbon atom densities on AuNRs with sub-nanometer spatial resolution. In collaboration with others, we revealed that the mean value for surfactant-bilayer-coated AuNRs had 10–30% reduced ligand density at the ends of the rods compared to the sides, confirming prior indirect evidence for spatially distinct ligand densities.Recent work has found that surface ligands on nanoparticles can, somewhat surprisingly, enhance the selectivity and efficiency of the electrocatalytic reduction of CO2 by controlling access to the active site, tuning its electronic and chemical environment, or denying entry to impurities that poison the nanoparticle surface to facilitate reduction. Looking to the future, while NMR and EELS are powerful and complementary techniques for investigating surface coatings on AuNPs, the frontier of this field includes the development of methods to probe the surface ligands of individual NPs in a high-throughput manner, to monitor nano-bio interactions within complex matrices, and to study structure–property relationships of AuNPs in biological systems. 
    more » « less