skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Submodular Cost Submodular Cover with an Approximate Oracle
Award ID(s):
1814614
PAR ID:
10112850
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ICML
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evans, Robin; Shpitser, Ilya (Ed.)
    We consider the problem of maximizing submodular functions under submodular constraints by formulating the problem in two ways: \SCSKC and \DiffC. Given two submodular functions $$f$$ and $$g$$ where $$f$$ is monotone, the objective of \SCSKC problem is to find a set $$S$$ of size at most $$k$$ that maximizes $f(S)$ under the constraint that $$g(S)\leq \theta$$, for a given value of $$\theta$$. The problem of \DiffC focuses on finding a set $$S$$ of size at most $$k$$ such that $h(S) = f(S)-g(S)$$ is maximized. It is known that these problems are highly inapproximable and do not admit any constant factor multiplicative approximation algorithms unless NP is easy. Known approximation algorithms involve data-dependent approximation factors that are not efficiently computable. We initiate a study of the design of approximation algorithms where the approximation factors are efficiently computable. For the problem of \SCSKC, we prove that the greedy algorithm produces a solution whose value is at least $$(1-1/e)f(\OPT) - A$, where $$A$$ is the data-dependent additive error. For the \DiffC problem, we design an algorithm that uses the \SCSKC greedy algorithm as a subroutine. This algorithm produces a solution whose value is at least $$(1-1/e)h(\OPT)-B$, where $$B$$ is also a data-dependent additive error. A salient feature of our approach is that the additive error terms can be computed efficiently, thus enabling us to ascertain the quality of the solutions produced. 
    more » « less
  2. This paper considers the problems of maximizing a continuous non-monotone submodular function over the hypercube, both with and without coordinate-wise concavity. This family of optimization problems has several applications in machine learning, economics, and communication systems. The main result is the first 1/2-approximation algorithm for continuous submodular function maximization; this approximation factor of 1/2 is the best possible for algorithms that only query the objective function at polynomially many points. For the special case of DR-submodular maximization, i.e. when the submodular functions are also coordinate-wise concave along all coordinates, we provide a different 1 2-approximation algorithm that runs in quasi-linear time. 
    more » « less
  3. Kraus, Andreas (Ed.)
    In this paper we study the fundamental problems of maximizing a continuous nonmonotone submodular function over the hypercube, both with and without coordinate-wise concavity. This family of optimization problems has several applications in machine learning, economics, and communication systems. Our main result is the first 1 2 -approximation algorithm for continuous submodular function maximization; this approximation factor of 1 2 is the best possible for algorithms that only query the objective function at polynomially many points. For the special case of DR-submodular maximization, i.e. when the submodular function is also coordinate-wise concave along all coordinates, we provide a different 1 2 -approximation algorithm that runs in quasi-linear time. Both these results improve upon prior work (Bian et al., 2017a,b; Soma and Yoshida, 2017). Our first algorithm uses novel ideas such as reducing the guaranteed approximation problem to analyzing a zero-sum game for each coordinate, and incorporates the geometry of this zero-sum game to fix the value at this coordinate. Our second algorithm exploits coordinate-wise concavity to identify a monotone equilibrium condition sufficient for getting the required approximation guarantee, and hunts for the equilibrium point using binary search. We further run experiments to verify the performance of our proposed algorithms in related machine learning applications. 
    more » « less