skip to main content


Title: Craniofacial skeletal response to encephalization: How do we know what we think we know?
Abstract

Dramatic changes in cranial capacity have characterized human evolution. Important evolutionary hypotheses, such as the spatial packing hypothesis, assert that increases in relative brain size (encephalization) have caused alterations to the modern human skull, resulting in a suite of traits unique among extant primates, including a domed cranial vault, highly flexed cranial base, and retracted facial skeleton. Most prior studies have used fossil or comparative primate data to establish correlations between brain size and cranial form, but the mechanistic basis for how changes in brain size impact the overall shape of the skull resulting in these cranial traits remains obscure and has only rarely been investigated critically. We argue that understanding how changes in human skull morphology could have resulted from increased encephalization requires the direct testing of hypotheses relating to interaction of embryonic development of the bones of the skull and the brain. Fossil and comparative primate data have thoroughly described the patterns of association between brain size and skull morphology. Here we suggest complementing such existing datasets with experiments focused on mechanisms responsible for producing the observed patterns to more thoroughly understand the role of encephalization in shaping the modern human skull.

 
more » « less
Award ID(s):
1731909
NSF-PAR ID:
10462475
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Physical Anthropology
Volume:
168
Issue:
S67
ISSN:
0002-9483
Page Range / eLocation ID:
p. 27-46
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Orbit orientation in primates has been linked to adaptive factors related to activity pattern and size‐related variation in structural influences on orbit position. Although differences in circumorbital form between anthropoids and strepsirrhines appear to be related to interspecific disparities in levels of orbital convergence and orbital frontation, there is considerable overlap in convergence between suborders. Unfortunately, putative links between convergence and frontation across primates, and consequent arguments about primate and anthropoid origins, are likely to be influenced by allometry, the size range of a respective sample, and adaptive influences on encephalization and activity patterns. Such a multifarious system is less amenable to interspecific treatment across higher‐level clades. An ontogenetic perspective is one way to evaluate transformations from one character state to another, especially as they pertain to allometric effects on phenotypic variation. We characterized the ontogeny of orbital convergence and frontation in 13 anthropoid and strepsirrhine species. In each suborder, correlation and regression analyses were used to test hypotheses regarding the allometric bases of variation in orbital orientation. Growth trajectories were analyzed intra‐ and inter‐specifically. Frontation decreased postnatally in all taxa due to the negative scaling of brain vs. skull size. Further, interspecific variation in relative levels of frontation was linked to corresponding ontogenetic transpositions in encephalization that differed within both suborders. In strepsirrhines, postnatal increases in convergence were largely due to the negative allometry of orbit vs. skull size. In contrast, convergence in anthropoids varied little during growth, being unrelated to ontogenetic variation in either relative orbit or interorbit size. Anat Rec, 302:2093–2104, 2019. © 2019 American Association for Anatomy

     
    more » « less
  2. Abstract Modern computational and imaging methods are revolutionizing the fields of comparative morphology, biomechanics, and ecomorphology. In particular, imaging tools such as X-ray micro computed tomography (µCT) and diffusible iodine-based contrast enhanced CT allow observing and measuring small and/or otherwise inaccessible anatomical structures, and creating highly accurate three-dimensional (3D) renditions that can be used in biomechanical modeling and tests of functional or evolutionary hypotheses. But, do the larger datasets generated through 3D digitization always confer greater power to uncover functional or evolutionary patterns, when compared with more traditional methodologies? And, if so, why? Here, we contrast the advantages and challenges of using data generated via (3D) CT methods versus more traditional (2D) approaches in the study of skull macroevolution and feeding functional morphology in bats. First, we test for the effect of dimensionality and landmark number on inferences of adaptive shifts during cranial evolution by contrasting results from 3D versus 2D geometric morphometric datasets of bat crania. We find sharp differences between results generated from the 3D versus some of the 2D datasets (xy, yz, ventral, and frontal), which appear to be primarily driven by the loss of critical dimensions of morphological variation rather than number of landmarks. Second, we examine differences in accuracy and precision among 2D and 3D predictive models of bite force by comparing three skull lever models that differ in the sources of skull and muscle anatomical data. We find that a 3D model that relies on skull µCT scans and muscle data partly derived from diceCT is slightly more accurate than models based on skull photographs or skull µCT and muscle data fully derived from dissections. However, the benefit of using the diceCT-informed model is modest given the effort it currently takes to virtually dissect muscles from CT scans. By contrasting traditional and modern tools, we illustrate when and why 3D datasets may be preferable over 2D data, and vice versa, and how different methodologies can complement each other in comparative analyses of morphological function and evolution. 
    more » « less
  3. Abstract

    Size and shape are often considered important variables that lead to variation in performance. In studies of feeding, size‐corrected metrics of the skull are often used as proxies of biting performance; however, few studies have examined the relationship between cranial shape in its entirety and estimated bite force across species and how dietary ecologies may affect these variables differently. Here, we used geometric morphometric and phylogenetic comparative approaches to examine relationships between cranial morphology and estimated bite force in the carnivoran clade Musteloidea. We found a strong relationship between cranial size and estimated bite force but did not find a significant relationship between cranial shape and size‐corrected estimated bite force. Many‐to‐one mapping of form to function may explain this pattern because a variety of evolutionary shape changes rather than a single shape change may have contributed to an increase in relative biting ability. We also found that dietary ecologies influenced cranial shape evolution but did not influence cranial size nor size‐corrected bite force evolution. Although musteloids with different diets exhibit variation in cranial shapes, they have similar estimated bite forces suggesting that other feeding performance metrics and potentially nonfeeding traits are also important contributors to cranial evolution. We postulate that axial and appendicular adaptations and the interesting feeding behaviours reported for species within this group also facilitate different dietary ecologies between species. Future work integrating cranial, axial and appendicular form and function with behavioural observations will reveal further insights into the evolution of dietary ecologies and other ecological variables.

     
    more » « less
  4. ABSTRACT Comparing patterns of performance and kinematics across behavior, development and phylogeny is crucial to understand the evolution of complex musculoskeletal systems such as the feeding apparatus. However, conveying 3D spatial data of muscle orientation throughout a feeding cycle, ontogenetic pathway or phylogenetic lineage is essential to understanding the function and evolution of the skull in vertebrates. Here, we detail the use of ternary plots for displaying and comparing the 3D orientation of muscle data. First, we illustrate changes in 3D jaw muscle resultants during jaw closing taxa the American alligator (Alligator mississippiensis). Second, we show changes in 3D muscle resultants of jaw muscles across an ontogenetic series of alligators. Third, we compare 3D resultants of jaw muscles of avian-line dinosaurs, including extant (Struthio camelus, Gallus gallus, Psittacus erithacus) and extinct (Tyrannosaurus rex) species to outline the reorganization of jaw muscles that occurred along the line to modern birds. Finally, we compare 3D resultants of jaw muscles of the hard-biting species in our sample (A. mississippiensis, T. rex, P. erithacus) to illustrate how disparate jaw muscle resultants are employed in convergent behaviors in archosaurs. Our findings show that these visualizations of 3D components of jaw muscles are immensely helpful towards identifying patterns of cranial performance, growth and diversity. These tools will prove useful for testing other hypotheses in functional morphology, comparative biomechanics, ecomorphology and organismal evolution. 
    more » « less
  5. Abstract

    The nearly complete cranium DAN5/P1 was found at Gona (Afar, Ethiopia), dated to 1.5–1.6 Ma, and assigned to the speciesHomo erectus. Its size is, nonetheless, particularly small for the known range of variation of this taxon, and the cranial capacity has been estimated as 598 cc. In this study, we analyzed a reconstruction of its endocranial cast, to investigate its paleoneurological features. The main anatomical traits of the endocast were described, and its morphology was compared with other fossil and modern human samples. The endocast shows most of the traits associated with less encephalized human taxa, like narrow frontal lobes and a simple meningeal vascular network with posterior parietal branches. The parietal region is relatively tall and rounded, although not especially large. Based on our set of measures, the general endocranial proportions are within the range of fossils included in the speciesHomo habilisor in the genusAustralopithecus. Similarities with the genusHomoinclude a more posterior position of the frontal lobe relative to the cranial bones, and the general endocranial length and width when size is taken into account. This new specimen extends the known brain size variability ofHomo ergaster/erectus, while suggesting that differences in gross brain proportions among early human species, or even between early humans and australopiths, were absent or subtle.

     
    more » « less