Abstract PremiseClimate change poses challenges to grasslands, including those of the North American Great Plains Region, where shifts in species distributions and fire dynamics are expected. Our present analysis focuses on remaining grasslands within this largely developed and agricultural region. The differential responses of C4and C3grass species to future climate conditions, particularly in habitat suitability and flammability, are critical for understanding ecosystem changes. MethodsWe used species distribution models to predict shifts in habitat suitability for 37 grass species under future climate scenarios and assessed flammability traits in a free‐air CO2‐enrichment study, focusing on species' physiological responses to elevated CO2, warming, and drought. ResultsOur models predicted that C4species will retain higher habitat suitability, while C3species will decline. Leaf‐level flammability analysis showed that species with higher water‐use efficiency under elevated CO will have lower flammability than under non‐elevated, potentially decreasing the predicted rate of fire spread when such species dominate. In contrast, species with higher growth rates but lower water‐use efficiency may be more flammable. Species‐specific responses varied within functional types. Anticipated shifts in species distributions suggest C4species will become more dominant, potentially altering competitive dynamics and reducing C3diversity. Changes in flammability under future conditions are expected to influence fire regimes, with a predicted decrease in mean community rate of spread due to the dominance of less‐flammable C4species. ConclusionsThese findings highlight the need for adaptive fire management and conservation strategies to maintain biodiversity and ecosystem function in North American grasslands under climate change.
more »
« less
Response to Comment on “Unexpected reversal of C 3 versus C 4 grass response to elevated CO 2 during a 20-year field experiment”
Nie and colleagues suggest a key role for interannual climate variation as an explanation for the temporal dynamics of an unexpected 20-year reversal of biomass responses of C 3 -C 4 grasses to elevated CO 2 . However, we had already identified some climate-dependent differences in C 3 and C 4 responses to eCO 2 and shown that these could not fully explain the temporal dynamics we observed.
more »
« less
- Award ID(s):
- 1725683
- PAR ID:
- 10112995
- Date Published:
- Journal Name:
- Science
- Volume:
- 361
- Issue:
- 6407
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- eaau8982
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Increasing atmospheric CO2is changing the dynamics of tropical savanna vegetation. C3trees and grasses are known to experience CO2fertilization, whereas responses to CO2by C4grasses are more ambiguous.Here, we sample stable carbon isotope trends in herbarium collections of South African C4and C3grasses to reconstruct13C discrimination.We found that C3grasses showed no trends in13C discrimination over the past century but that C4grasses increased their13C discrimination through time, especially since 1950. These changes were most strongly linked to changes in atmospheric CO2rather than to trends in rainfall climatology or temperature.Combined with previously published evidence that grass biomass has increased in C4‐dominated savannas, these trends suggest that increasing water‐use efficiency due to CO2fertilization may be changing C4plant–water relations. CO2fertilization of C4grasses may thus be a neglected pathway for anthropogenic global change in tropical savanna ecosystems.more » « less
-
Global demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C 3 or C 4 photosynthesis. CAM plants are derived from C 3 photosynthesis ancestors. However, it is extremely unlikely that the C 3 or C 4 crop plants would evolve rapidly into CAM photosynthesis without human intervention. Currently, there is growing interest in improving WUE through transferring CAM into C 3 crops. However, engineering a major metabolic plant pathway, like CAM, is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C 3 and CAM photosynthesis, as well as overcoming physiometabolic limitations such as diurnal stomatal regulation. Recent advances in CAM evolutionary genomics research, genome editing, and synthetic biology have increased the likelihood of successful acceleration of C 3 -to-CAM progression. Here, we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway. Then, we review the principles of CAM engineering in an evolutionary context. Lastly, we discuss the technical approaches to accelerate the C 3 -to-CAM transition in plants using synthetic biology toolboxes.more » « less
-
Summary Plant carbon isotope discrimination is complex, and could be driven by climate, evolution and/or edaphic factors. We tested the climate drivers of carbon isotope discrimination in modern and historical plant chemistry, and focus in particular on the relationship between rising [CO2] over Industrialization and carbon isotope discrimination.We generated temporal records of plant carbon isotopes from museum specimens collected over a climo‐sequence to test plant responses to climate and atmospheric change over the past 200 yr (includingPinus strobus,Platycladus orientalis,Populus tremuloides,Thuja koraiensis,Thuja occidentalis,Thuja plicata,Thuja standishiiandThuja sutchuenensis). We aggregated our results with a meta‐analysis of a wide range of C3plants to make a comprehensive study of the distribution of carbon isotope discrimination and values among different plant types.We show that climate variables (e.g. mean annual precipitation, temperature and, key to this study, CO2in the atmosphere) do not drive carbon isotope discrimination.Plant isotope discrimination is intrinsic to each taxon, and could link phylogenetic relationships and adaptation to climate quantitatively and over ecological to geological time scales.more » « less
-
Pure methane (CH 4 ) ices processed by energetic electrons under ultra-high vacuum conditions to simulate secondary electrons formed via galactic cosmic rays (GCRs) penetrating interstellar ice mantles have been shown to produce an array of complex hydrocarbons with the general formulae: C n H 2n+2 ( n = 4–8), C n H 2n ( n = 3–9), C n H 2n−2 ( n = 3–9), C n H 2n−4 ( n = 4–9), and C n H 2n−6 ( n = 6–7). By monitoring the in situ chemical evolution of the ice combined with temperature programmed desorption (TPD) studies and tunable single photon ionization coupled to a reflectron time-of-flight mass spectrometer, specific isomers of C 3 H 4 , C 3 H 6 , C 4 H 4 , and C 4 H 6 were probed. These experiments confirmed the synthesis of methylacetylene (CH 3 CCH), propene (CH 3 CHCH 2 ), cyclopropane (c-C 3 H 6 ), vinylacetylene (CH 2 CHCCH), 1-butyne (HCCC 2 H 5 ), 2-butyne (CH 3 CCCH 3 ), 1,2-butadiene (H 2 CCCH(CH 3 )), and 1,3-butadiene (CH 2 CHCHCH 2 ) with yields of 2.17 ± 0.95 × 10 −4 , 3.7 ± 1.5 × 10 −3 , 1.23 ± 0.77 × 10 −4 , 1.28 ± 0.65 × 10 −4 , 4.01 ± 1.98 × 10 −5 , 1.97 ± 0.98 × 10 −4 , 1.90 ± 0.84 × 10 −5 , and 1.41 ± 0.72 × 10 −4 molecules eV −1 , respectively. Mechanistic studies exploring the formation routes of methylacetylene, propene, and vinylacetylene were also conducted, and revealed the additional formation of the 1,2,3-butatriene isomer. Several of the above isomers, methylacetylene, propene, vinylacetylene, and 1,3-butadiene, have repeatedly been shown to be important precursors in the formation of polycyclic aromatic hydrocarbons (PAHs), but until now their interstellar synthesis has remained elusive.more » « less
An official website of the United States government

