Symbolic planning techniques rely on abstract information about a continuous system to design a discrete planner to satisfy desired high‐level objectives. However, applying the generated discrete commands of the discrete planner to the original system may face several challenges, including real‐time implementation, preserving the properties of high‐level objectives in the continuous domain, and issues such as discontinuity in control signals that may physically harm the system. To address these issues and challenges, the authors proposed a novel hybrid control structure for systems with non‐linear multi‐affine dynamics over rectangular partitions. In the proposed framework, a discrete planner can be separately designed to achieve high‐level specifications. Then, the proposed hybrid controller generates jumpless continuous control signals to drive the system over the partitioned space executing the discrete commands of the planner. The hybrid controller generates continuous signals in real‐time while respecting the dynamics of the system and preserving the desired objectives of the high‐level plan. The design process is described in detail and the existence and uniqueness of the proposed solution are investigated. Finally, several case studies are provided to verify the effectiveness of the developed technique.
more »
« less
A unified sampling-based approach to integrated task and motion planning
We present a novel method for performing integrated task and motion planning (TMP) by adapting any off-the-shelf sampling-based motion planning algorithm to simultaneously solve for a symbolically and geometrically feasible plan using a single motion planner invocation. The core insight of our technique is an embedding of symbolic state into continuous space, coupled with a novel means of automatically deriving a function guiding a planner to regions of continuous space where symbolic actions can be executed. Our technique makes few assumptions and offers a great degree of flexibility and generality compared to state of the art planners. We describe our technique and offer a proof of probabilistic completeness along with empirical evaluation of our technique on manipulation benchmark problems.
more »
« less
- Award ID(s):
- 1646417
- PAR ID:
- 10113218
- Date Published:
- Journal Name:
- International Symposium on Robotics Research (ISRR)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Integrated task and motion planning (TAMP) has proven to be a valuable approach to generalizable long-horizon robotic manipulation and navigation problems. However, the typical TAMP problem formulation assumes full observability and deterministic action effects. These assumptions limit the ability of the planner to gather information and make decisions that are risk-aware. We propose a strategy for TAMP with Uncertainty and Risk Awareness (TAMPURA) that is capable of efficiently solving long-horizon planning problems with initial- state and action outcome uncertainty, including problems that require information gathering and avoiding undesirable and irreversible outcomes. Our planner reasons under uncertainty at both the abstract task level and continuous controller level. Given a set of closed-loop goal-conditioned controllers operating in the primitive action space and a description of their preconditions and potential capabilities, we learn a high-level abstraction that can be solved efficiently and then refined to continuous actions for execution. We demonstrate our approach on several robotics problems where uncertainty is a crucial factor and show that reasoning under uncertainty in these problems outperforms previously proposed determinized planning, direct search, and reinforcement learning strategies. Lastly, we demonstrate our planner on two real-world robotics problems using recent ad- vancements in probabilistic perception.more » « less
-
Contact-based decision and planning methods are becoming increasingly important to endow higher levels of autonomy for legged robots. Formal synthesis methods derived from symbolic systems have great potential for reasoning about high-level locomotion decisions and achieving complex maneuvering behaviors with correctness guarantees. This study takes a first step toward formally devising an architecture composed of task planning and control of whole-body dynamic locomotion behaviors in constrained and dynamically changing environments. At the high level, we formulate a two-player temporal logic game between the multi-limb locomotion planner and its dynamic environment to synthesize a winning strategy that delivers symbolic locomotion actions. These locomotion actions satisfy the desired high-level task specifications expressed in a fragment of temporal logic. Those actions are sent to a robust finite transition system that synthesizes a locomotion controller that fulfills state reachability constraints. This controller is further executed via a low-level motion planner that generates feasible locomotion trajectories. We construct a set of dynamic locomotion models for legged robots to serve as a template library for handling diverse environmental events. We devise a replanning strategy that takes into consideration sudden environmental changes or large state disturbances to increase the robustness of the resulting locomotion behaviors. We formally prove the correctness of the layered locomotion framework guaranteeing a robust implementation by the motion planning layer. Simulations of reactive locomotion behaviors in diverse environments indicate that our framework has the potential to serve as a theoretical foundation for intelligent locomotion behaviors.more » « less
-
Medical steerable needles can follow 3D curvilinear trajectories to avoid anatomical obstacles and reach clinically significant targets inside the human body. Automating steerable needle procedures can enable physicians and patients to harness the full potential of steerable needles by maximally leveraging their steerability to safely and accurately reach targets for medical procedures such as biopsies. For the automation of medical procedures to be clinically accepted, it is critical from a patient care, safety, and regulatory perspective to certify the correctness and effectiveness of the planning algorithms involved in procedure automation. In this paper, we take an important step toward creating a certifiable optimal planner for steerable needles. We present an efficient, resolution-complete motion planner for steerable needles based on a novel adaptation of multi-resolution planning. This is the first motion planner for steerable needles that guarantees to compute in finite time an obstacle-avoiding plan (or notify the user that no such plan exists), under clinically appropriate assumptions. Based on this planner, we then develop the first resolution-optimal motion planner for steerable needles that further provides theoretical guarantees on the quality of the computed motion plan, that is, global optimality, in finite time. Compared to state-of-the-art steerable needle motion planners, we demonstrate with clinically realistic simulations that our planners not only provide theoretical guarantees but also have higher success rates, have lower computation times, and result in higher quality plans.more » « less
-
Multisection continuum arms are bio-inspired manipulators that combine compliance, payload, dexterity, and safety to serve as co-robots in human-robot collaborative domains. Their hyper redundancy and complex kinematics, however, pose many challenges when performing path planning, especially in dynamic environments. In this paper, we present a W-Space based Rapidly Exploring Random Trees * path planner for multisection continuum arm robots in dynamic environments. The proposed planner improves the existing state-of-art planners in terms of computation time and the success rate, while removing the need for offline computation. On average, the computation time of our approach is below 2 seconds, and its average success rate is around 70 %. The computation time of the proposed planner significantly improves that of the state-of-the-art planner by roughly a factor of 20, making the former suitable for real-time applications. Moreover, for application domains where the obstacle motion is not very predictable (e.g., human obstacles), the proposed planner significantly improves the success rate of state-of-the-art planners by nearly 50 %. Lastly, we demonstrate the feasibility of several generated trajectories by replicating the motion on a physical prototype arm.more » « less
An official website of the United States government

