skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Connecting the Greenland ice-core and U∕Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events
Abstract. During the last glacial period Northern Hemisphere climate was characterizedby extreme and abrupt climate changes, so-called Dansgaard–Oeschger (DO)events. Most clearly observed as temperature changes in Greenland ice-corerecords, their climatic imprint was geographically widespread. However, thetemporal relation between DO events in Greenland and other regions isuncertain due to the chronological uncertainties of each archive, limitingour ability to test hypotheses of synchronous change. In contrast, theassumption of direct synchrony of climate changes forms the basis of manytimescales. Here, we use cosmogenic radionuclides (10Be,36Cl, 14C) to link Greenland ice-core records toU∕Th-dated speleothems, quantify offsets between the two timescales, andimprove their absolute dating back to 45000 years ago. This approach allowsus to test the assumption that DO events occurred synchronously betweenGreenland ice-core and tropical speleothem records with unprecedentedprecision. We find that the onset of DO events occurs within synchronizationuncertainties in all investigated records. Importantly, we demonstrate thatlocal discrepancies remain in the temporal development of rapid climatechange for specific events and speleothems. These may either be related tothe location of proxy records relative to the shifting atmospheric fronts orto underestimated U∕Th dating uncertainties. Our study thus highlightsthe potential for misleading interpretations of the Earth system whenapplying the common practice of climate wiggle matching.  more » « less
Award ID(s):
1702816
PAR ID:
10113278
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Climate of the Past
Volume:
14
Issue:
11
ISSN:
1814-9332
Page Range / eLocation ID:
1755 to 1781
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Close coupling of Iberian hydroclimate and North Atlantic seasurface temperature (SST) during recent glacial periods has been identifiedthrough the analysis of marine sediment and pollen grains co-deposited on thePortuguese continental margin. While offering precisely correlatable records,these time series have lacked a directly dated, site-specific record ofcontinental Iberian climate spanning multiple glacial cycles as a point ofcomparison. Here we present a high-resolution, multi-proxy (growth dynamicsandδ13C, δ18O, and δ234Uvalues) composite stalagmite record of hydroclimate from two caves in westernPortugal across the majority of the last two glacial cycles (∼220ka).At orbital and millennial scales, stalagmite-based proxies for hydroclimateproxies covaried with SST, with elevated δ13C,δ18O, and δ234U values and/or growth hiatusesindicating reduced effective moisture coincident with periods of lowered SSTduring major ice-rafted debris events, in agreement with changes inpalynological reconstructions of continental climate. While in many cases thePortuguese stalagmite record can be scaled to SST, in some intervals themagnitudes of stalagmite isotopic shifts, and possibly hydroclimate, appearto have been somewhat decoupled from SST. 
    more » « less
  2. Abstract. A large array of proxy recordssuggests that the “4.2ka event” marks an approximately300-year long period (∼3.9 to 4.2ka) ofmajor climate change across the globe. However, the climatic manifestation ofthis event, including its onset, duration, and termination, remains lessclear in the Indian summer monsoon (ISM) domain. Here, we present new oxygenisotope (δ18O) data from a pair of speleothems (ML.1 and ML.2)from Mawmluh Cave, Meghalaya, India, that provide a high-resolution record ofISM variability during a period (∼3.78 and 4.44ka) that fullyencompasses the 4.2ka event. The sub-annually to annually resolved ML.1δ18O record is constrained by 18 230Th dates with anaverage dating error of ±13 years (2σ) and a resolution of ∼40 years, which allows us to characterize the ISM variability withunprecedented detail. The inferred pattern of ISM variability during theperiod contemporaneous with the 4.2ka event shares broad similarities andkey differences with the previous reconstructions of ISM from the MawmluhCave and other proxy records from the region. Our data suggest that the ISMintensity, in the context of the length of our record, abruptly decreased at∼4.0ka ( ± 13  years), marking the onset of a multi-centennialperiod of relatively reduced ISM, which was punctuated by at least twomulti-decadal droughts between ∼3.9 and 4.0ka. The latter stands outin contrast with some previous proxy reconstructions of the ISM, in which the4.2ka event has been depicted as a singular multi-centennial drought. 
    more » « less
  3. Abstract. Radiation fogs at Summit Station, Greenland (72.58 N,38.48 W; 3210 m a.s.l.), are frequently reported by observers. Thefogs are often accompanied by fogbows, indicating the particles are composedof liquid; and because of the low temperatures at Summit, this liquid issupercooled. Here we analyze the formation of these fogs as well as theirphysical and radiative properties. In situ observations of particle size anddroplet number concentration were made using scattering spectrometers near 2 and 10 m height from 2012 to 2014. These data are complemented bycolocated observations of meteorology, turbulent and radiative fluxes, andremote sensing. We find that liquid fogs occur in all seasons with thehighest frequency in September and a minimum in April. Due to thecharacteristics of the boundary-layer meteorology, the fogs are elevated,forming between 2 and 10 m, and the particles then fall toward the surface.The diameter of mature particles is typically 20–25 µm in summer.Number concentrations are higher at warmer temperatures and, thus, higher insummer compared to winter. The fogs form at temperatures as warm as −5 C, while the coldest form at temperatures approaching −40 C. Facilitated by the elevated condensation, in winter two-thirds offogs occurred within a relatively warm layer above the surface when thenear-surface air was below −40 C, as cold as −57 C,which is too cold to support liquid water. This implies that fog particlessettling through this layer of cold air freeze in the air column beforecontacting the surface, thereby accumulating at the surface as ice withoutriming. Liquid fogs observed under otherwise clear skies annually imparted1.5 W m−2 of cloud radiative forcing (CRF). While this is a smallcontribution to the surface radiation climatology, individual events areinfluential. The mean CRF during liquid fog events was 26 W m−2, andwas sometimes much higher. An extreme case study was observed toradiatively force 5 C of surface warming during the coldest partof the day, effectively damping the diurnal cycle. At lower elevations ofthe ice sheet where melting is more common, such damping could signal a rolefor fogs in preconditioning the surface for melting later in the day. 
    more » « less
  4. Abstract. Field investigations of the properties of heavily melted “rotten” Arcticsea ice were carried out on shorefast and drifting ice off the coast ofUtqiaġvik (formerly Barrow), Alaska, during the melt season. While noformal criteria exist to qualify when ice becomes rotten, the objectiveof this study was to sample melting ice at the point at which its structural andoptical properties are sufficiently advanced beyond the peak of the summerseason. Baseline data on the physical (temperature, salinity, density,microstructure) and optical (light scattering) properties of shorefast icewere recorded in May and June 2015. In July of both 2015 and 2017, smallboats were used to access drifting rotten ice within ∼32 km of Utqiaġvik. Measurements showed that pore space increased as icetemperature increased (−8 to 0 C), ice salinitydecreased (10 to 0 ppt), and bulk density decreased (0.9 to0.6 g cm−3). Changes in pore space were characterized with thin-sectionmicrophotography and X-ray micro-computed tomography in the laboratory. Theseanalyses yielded changes in average brine inclusion number density (whichdecreased from 32 to 0.01 mm−3), mean pore size (whichincreased from 80 µm to 3 mm), and total porosity (increased from0 % to > 45 %) and structural anisotropy (variable, withvalues of generally less than 0.7). Additionally, light-scattering coefficientsof the ice increased from approximately 0.06 to > 0.35 cm−1 as the ice melt progressed. Together, these findings indicate thatthe properties of Arctic sea ice at the end of melt season are significantlydistinct from those of often-studied summertime ice. If such rotten ice wereto become more prevalent in a warmer Arctic with longer melt seasons, thiscould have implications for the exchange of fluid and heat at the oceansurface. 
    more » « less
  5. null (Ed.)
    Speleothems are important timekeepers of Earth’s climate history. A key advantage of speleothems is that they can be dated using U–Th techniques. Mass spectrometric methods for measuring U and Th isotopes has led to vast improvements in measurement precision and a dramatic reduction in sample size. As a result, the timing of past climate, environment, and Earth system changes can be investigated at exceptional temporal precision. In this review, we summarize the principles and history of U–Th dating of speleothems. Finally, we highlight three studies that use U–Th dated speleothems to investigate past changes to the Asian monsoon, constrain the timing of sociopolitical change in ancient civilizations, and develop a speleothem-based calibration of the 14C timescale. 
    more » « less