skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Solving Non-smooth Constrained Programs with Lower Complexity than O(1/ε): A Primal-Dual Homotopy Smoothing Approach
We propose a new primal-dual homotopy smoothing algorithm for a linearly constrained convex program, where neither the primal nor the dual function has to be smooth or strongly convex. The best known iteration complexity solving such a non-smooth problem is O(ε−1). In this paper, we show that by leveraging a local error bound condition on the dual function, the proposed algorithm can achieve a better primal convergence time of O 􏰕ε−2/(2+β) log2(ε−1)􏰖, where β ∈ (0, 1] is a local error bound parameter. As an example application of the general algorithm, we show that the distributed geometric median problem, which can be formulated as a constrained convex program, has its dual function non-smooth but satisfying the aforementioned local error bound condition with β = 1/2, therefore enjoying a convergence time of O 􏰕ε−4/5 log2(ε−1)􏰖. This result improves upon the O(ε−1) convergence time bound achieved by existing distributed optimization algorithms. Simulation experiments also demonstrate the performance of our proposed algorithm.  more » « less
Award ID(s):
1718477
PAR ID:
10113343
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider an in-network optimal resource allocation problem in which a group of agents interacting over a connected graph want to meet a demand while minimizing their collective cost. The contribution of this paper is to design a distributed continuous-time algorithm for this problem inspired by a recently developed first-order transformed primal-dual method. The solution applies to cluster-based setting where each agent may have a set of subagents, and its local cost is the sum of the cost of these subagents. The proposed algorithm guarantees an exponential convergence for strongly convex costs and asymptotic convergence for convex costs. Exponential convergence when the local cost functions are strongly convex is achieved even when the local gradients are only locally Lipschitz. For convex local cost functions, our algorithm guarantees asymptotic convergence to a point in the minimizer set. Through numerical examples, we show that our proposed algorithm delivers a faster convergence compared to existing distributed resource allocation algorithms. 
    more » « less
  2. We consider a class of multi-agent cooperative consensus optimization problems with local nonlinear convex constraints where only those agents connected by an edge can directly communicate, hence, the optimal consensus decision lies in the intersection of these private sets. We develop an asynchronous distributed accelerated primal-dual algorithm to solve the considered problem. The proposed scheme is the first asynchronous method with an optimal convergence guarantee for this class of problems, to the best of our knowledge. In particular, we provide an optimal convergence rate of $$\mathcal O(1/K)$$ for suboptimality, infeasibility, and consensus violation. 
    more » « less
  3. In this work, we consider a distributed online convex optimization problem, with time-varying (potentially adversarial) constraints. A set of nodes, jointly aim to minimize a global objective function, which is the sum of local convex functions. The objective and constraint functions are revealed locally to the nodes, at each time, after taking an action. Naturally, the constraints cannot be instantaneously satisfied. Therefore, we reformulate the problem to satisfy these constraints in the long term. To this end, we propose a distributed primal-dual mirror descent-based algorithm, in which the primal and dual updates are carried out locally at all the nodes. This is followed by sharing and mixing of the primal variables by the local nodes via communication with the immediate neighbors. To quantify the performance of the proposed algorithm, we utilize the challenging, but more realistic metrics of dynamic regret and fit. Dynamic regret measures the cumulative loss incurred by the algorithm compared to the best dynamic strategy, while fit measures the long term cumulative constraint violations. Without assuming the restrictive Slater’s conditions, we show that the proposed algorithm achieves sublinear regret and fit under mild, commonly used assumptions. 
    more » « less
  4. We study a distributed policy evaluation problem in which a group of agents with jointly observed states and private local actions and rewards collaborate to learn the value function of a given policy via local computation and communication. This problem arises in various large-scale multi-agent systems, including power grids, intelligent transportation systems, wireless sensor networks, and multi-agent robotics. We develop and analyze a new distributed temporal-difference learning algorithm that minimizes the mean-square projected Bellman error. Our approach is based on a stochastic primal-dual method and we improve the best-known convergence rate from $$O(1/\sqrt{T})$$ to $O(1/T)$, where $$T$$ is the total number of iterations. Our analysis explicitly takes into account the Markovian nature of the sampling and addresses a broader class of problems than the commonly-used i.i.d. sampling scenario. 
    more » « less
  5. We consider the distributed statistical learning problem in a high-dimensional adversarial scenario. At each iteration, $$m$$ worker machines compute stochastic gradients and send them to a master machine. However, an $$\alpha$$-fraction of $$m$$ worker machines, called Byzantine machines, may act adversarially and send faulty gradients. To guard against faulty information sharing, we develop a distributed robust learning algorithm based on Nesterov's dual averaging. This algorithms is provably robust against Byzantine machines whenever $$\alpha\in[0, 1/2)$$. For smooth convex functions, we show that running the proposed algorithm for $$T$$ iterations achieves a statistical error bound $$\tilde{O}\big(1/\sqrt{mT}+\alpha/\sqrt{T}\big)$$. This result holds for a large class of normed spaces and it matches the known statistical error bound for Byzantine stochastic gradient in the Euclidean space setting. A key feature of the algorithm is that the dimension dependence of the bound scales with the dual norm of the gradient; in particular, for probability simplex, we show that it depends logarithmically on the problem dimension $$d$$. Such a weak dependence on the dimension is desirable in high-dimensional statistical learning and it has been known to hold for the classical mirror descent but it appears to be new for the Byzantine gradient scenario. 
    more » « less