A series of model poly((±)-lactide) (PLA) graft copolymers was synthesized by ring-opening metathesis polymerization and used to probe the star-to-bottlebrush transition in shear and extensional flows. Ten samples with backbone degrees of polymerization 11 ≤ Nbb ≤ 420 were investigated using small-amplitude oscillatory shear (SAOS) and extensional rheometry measurements. Each contained one PLA side chain of length Nsc = 72 per two backbone repeating units on average (graft density of z = 0.5). The star-like to bottlebrush transition was identified at Nbb = 50–69 using SAOS. In extension, melt strain hardening is absent in the star-like melts (Nbb ≤ 50) but is prominent in the bottlebrush limit (Nbb > 69). The onset of melt strain hardening occurs at a time scale equivalent to the Rouse time of the backbone. A molecular interpretation of these results builds upon recent conjectures related to strain-induced increases in interchain friction in bottlebrush polymers. These findings will be useful in designing bottlebrush melts that strain harden, which is critical in various types of processing methods involving extensional flows, including foaming, 3D printing, and film-blowing.
more »
« less
Dilute solution structure of bottlebrush polymers
Bottlebrush polymers are a class of macromolecules that have recently found use in a wide variety of materials, ranging from lubricating brushes and nanostructured coatings to elastomeric gels that exhibit structural colors. These polymers are characterized by dense branches extending from a central backbone and thus have properties distinct from linear polymers. It remains a challenge to specifically understand conformational properties of these molecules, due to the wide range of architectural parameters that can be present in a system, and thus there is a need to accurately characterize and model these molecules. In this paper, we use a combination of viscometry, light scattering, and computer simulations to gain insight into the conformational properties of dilute solution bottlebrush polymers. We focus on a series of model bottlebrushes consisting of a poly(norbornene) (PNB) backbone with poly(lactic acid) (PLA) side chains. We demonstrate that intrinsic viscosity and hydrodynamic radius are experimental observations sensitive to molecular architecture, exhibiting distinct differences with different choices of branches and backbone lengths. Informed by the atomistic structure of this PNB–PLA system, we rationalize a coarse-grained simulation model that we evaluate using a combination of Brownian dynamics and Monte Carlo simulations. We show that this exhibits quantitative matching to experimental results, enabling us to characterize the overall shape of the bottlebrush via a number of metrics that can be extended to more general bottlebrush architectures.
more »
« less
- Award ID(s):
- 1727605
- PAR ID:
- 10113553
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 15
- Issue:
- 14
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 2928 to 2941
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bottlebrush polymers are complex macromolecules with tunable physical properties dependent on the chemistry and architecture of both the side chains and the backbone. Prior work has demonstrated that bottlebrush polymer additives can be used to control the interfacial properties of blends with linear polymers but has not specifically addressed the effects of bottlebrush side chain microstructures. Here, using a combination of experiments and self-consistent field theory (SCFT) simulations, we investigated the effects of side chain microstructures by comparing the segregation of bottlebrush additives having random copolymer side chains with bottlebrush additives having a mixture of two different homopolymer side chain chemistries. Specifically, we synthesized bottlebrush polymers with either poly(styrene- ran -methyl methacrylate) side chains or with a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA) side chains. The bottlebrush additives were matched in terms of PS and PMMA compositions, and they were blended with linear PS or PMMA chains that ranged in length from shorter to longer than the bottlebrush side chains. Experiments revealed similar behaviors of the two types of bottlebrushes, with a slight preference for mixed side-chain bottlebrushes at the film surface. SCFT simulations were qualitatively consistent with experimental observations, predicting only slight differences in the segregation of bottlebrush additives driven by side chain microstructures. Specifically, these slight differences were driven by the chemistries of the bottlebrush polymer joints and side chain end-groups, which were entropically repelled and attracted to interfaces, respectively. Using SCFT, we also demonstrated that the interfacial behaviors were dominated by entropic effects with high molecular weight linear polymers, leading to enrichment of bottlebrush near interfaces. Surprisingly, the SCFT simulations showed that the chemistry of the joints connecting the bottlebrush backbones and side chains played a more significant role compared with the side chain end groups in affecting differences in surface excess of bottlebrushes with random and mixed side chains. This work provides new insights into the effects of side chain microstructure on segregation of bottlebrush polymer additives.more » « less
-
Bottlebrush polymers, macromolecules consisting of dense polymer side chains grafted from a central polymer backbone, have unique properties resulting from this well-defined molecular architecture. With the advent of controlled radical polymerization techniques, access to these architectures has become more readily available. However, synthetic challenges remain, including the need for intermediate purification, the use of toxic solvents, and challenges with achieving long bottlebrush architectures due to backbone entanglements. Herein, we report hybrid bonding bottlebrush polymers (systems integrating covalent and noncovalent bonding of structural units) consisting of poly(sodium 4-styrenesulfonate) (p(NaSS)) brushes grafted from a peptide amphiphile (PA) supramolecular polymer backbone. This was achieved using photoinitiated electron/energy transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization in water. The structure of the hybrid bonding bottlebrush architecture was characterized using cryogenic transmission electron microscopy, and its properties were probed using rheological measurements. We observed that hybrid bonding bottlebrush polymers were able to organize into block architectures containing domains with high brush grafting density and others with no observable brushes. This finding is possibly a result of dynamic behavior unique to supramolecular polymer backbones, enabling molecular exchange or translational diffusion of monomers along the length of the assemblies. The hybrid bottlebrush polymers exhibited higher solution viscosity at moderate shear, protected supramolecular polymer backbones from disassembly at high shear, and supported self-healing capabilities, depending on grafting densities. Our results demonstrate an opportunity for novel properties in easily synthesized bottlebrush polymer architectures built with supramolecular polymers that might be useful in biomedical applications or for aqueous lubrication.more » « less
-
We report the synthesis and temperature-dependent morphologies of a series of polylactide-block-poly (ε-decalactone)-block-polylactide (LDL) triblock copolymers with 𝑀𝑛=16.0–18.1kg/mol and volume fractions 𝑓L=0.27–0.31 and associated core-shell bottlebrush (csBB) polymers, which derive from enchaining LDL triblocks through a polymerizable midchain functionality. While the LDL triblocks form micellar Frank-Kasper A15 and σ phases due to the conformational asymmetry of this monomer pair, the csBB morphologies sensitively depend on the backbone degree of polymerization (𝑁bb). At low 𝑁bb values, micellar Frank-Kasper phases with the brush backbone situated in the matrix domain are stable, albeit with a modest reduction in the mean interfacial curvature evidenced by a σ to A15 order-to-order transition. However, larger 𝑁bb values drive csBBs to form hexagonally packed cylinders phases. This 𝑁bb-dependent phase behavior is rationalized in terms of a star-to-bottlebrush transition. At low 𝑁bb values, the csBBs are akin to star polymers with pointlike junctions that can support complex micelle packings. As 𝑁bb increases, the csBBs adopt cylindrical molecular geometries with extended backbones situated in the matrix domain that prefer hexagonally packed cylinders morphologies.more » « less
-
The direct-growth technique was used to synthesize several macromonomers (MMs) employing reversible addition–fragmentation chain transfer (RAFT) polymerization by growing directly from a norbornene-functionalized chain transfer agent (CTA). We aimed to investigate the formation of bisnorbornenyl species resulting from radical termination by combination ( i.e. , coupling) during RAFT polymerization at different monomer conversion values in four types of monomers: styrene, tert -butyl acrylate, methyl methacrylate and N -acryloyl morpholine. Ring-opening metathesis polymerization (ROMP) of these MMs using Grubbs' 3rd generation catalyst (G3) at an MM : G3 ratio of 100 : 1 resulted in the formation of bottlebrush polymers. Analysis by size-exclusion chromatography (SEC) revealed high molar mass shoulders of varying intensities attributed to the incorporation of these bisnorbornenyl species to generate dimeric or higher-order bottlebrush polymer oligomers. The monomer type in the RAFT step heavily influenced the amount of these bottlebrush polymer dimers and oligomers, as did the monomer conversion value in the RAFT step: We found that the ROMP of polystyrene MMs with a target backbone degree of polymerization of 100 produced detectable coupling at ≥20% monomer conversion in the RAFT step, while it took ≥80% monomer conversion to observe coupling in the poly( tert -butyl acrylate) MMs. We did not detect coupling in the poly(methyl methacrylate) MMs, but broadening of the SEC peaks and an increase in dispersity occurred, suggesting the presence of metathesis-active alkene-containing chain ends created by disproportionation. Finally, poly( N -acryloyl morpholine) MMs, even when reaching 90% monomer conversion in the RAFT step, showed no detectable coupling in the bottlebrush polymers. These results highlight the importance of monomer choice and RAFT polymerization conditions in making MMs for ROMP grafting-through to make well-defined bottlebrush polymers.more » « less
An official website of the United States government

