skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Applying Deep Learning to the Cache Replacement Problem
Despite its success in many areas, deep learning is a poor fit for use in hardware predictors because these models are impractically large and slow, but this paper shows how we can use deep learning to help design a new cache replacement policy. We first show that for cache replacement, a powerful LSTM learning model can in an offline setting provide better accuracy than current hardware predictors. We then perform analysis to interpret this LSTM model, deriving a key insight that allows us to design a simple online model that matches the offline model's accuracy with orders of magnitude lower cost. The result is the Glider cache replacement policy, which we evaluate on a set of 33 memory-intensive programs from the SPEC 2006, SPEC 2017, and GAP (graph-processing) benchmark suites. In a single-core setting, Glider outperforms top finishers from the 2nd Cache Replacement Championship, reducing the miss rate over LRU by 8.9%, compared to reductions of 7.1% for Hawkeye, 6.5% for MPPPB, and 7.5% for SHiP++. On a four-core system, Glider improves IPC over LRU by 14.7%, compared with improvements of 13.6% (Hawkeye), 13.2% (MPPPB), and 11.4% (SHiP++).  more » « less
Award ID(s):
1823546
PAR ID:
10113801
Author(s) / Creator(s):
Date Published:
Journal Name:
International Symposium on Microrchitecture
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The past decade has seen the rise of highly successful cache replacement policies that are based on binary prediction. For example, the Hawkeye policy learns whether lines loaded by a given PC are Cache Friendly (likely to remain in the cache if Belady’s MIN policy had been used) or Cache Averse (likely to be evicted by Belady’s MIN policy). In this paper, we instead present a cache replacement policy that is based on multiclass prediction, which allows it to directly mimic Belady’s MIN policy in a surprisingly simple and effective way. Our policy uses a PC-based predictor to learn each cache line’s reuse distance; it then evicts lines based on their predicted time of reuse. We show that our use of multiclass prediction is more effective than binary prediction because it allows for a finer-grained ordering of cache lines during eviction and because it is more robust to prediction errors.Our empirical results show that our new policy, which we refer to as Mockingjay, outperforms the previous state-of-the-art on both single-core and multi-core platforms and both with and without a prefetcher. For example, with no prefetcher, on a mix of 100 multi-core workloads from the SPEC 2006, SPEC 2017, and GAP benchmark suites, Mockingjay sees an average improvement over LRU of 15.2%, compared to 7.6% for SHiP and 12.9% for Hawkeye. On a single-core platform, Mockingjay’s improvement over LRU is 5.7%, which approaches the 6.0% improvement of Belady MIN’s unrealizable policy. On a single-core platform (with a prefetcher) running the high-MPKI CVP workloads, Mockingjay’s improvement over LRU is 20.1%, compared to 13.4% for Hawkeye. 
    more » « less
  2. Content caching is vital for enhancing web server efficiency and reducing network congestion, particularly in platforms predicting user actions. Despite many studies conducted toimprove cache replacement strategies, there remains space for improvement. This paper introduces STRCacheML, a Machine Learning (ML) assisted Content Caching Policy. STRCacheML leverages available attributes within a platform to make intelligent cache replacement decisions offline. We have tested various Machine Learning and Deep Learning algorithms to adapt the one with the highest accuracy; we have integrated that algorithm into our cache replacement policy. This selected ML algorithm was employed to estimate the likelihood of cache objects being requested again, an essential factor in cache eviction scenarios. The IMDb dataset, constituting numerous videos with corresponding attributes, was utilized to conduct our experiment. The experimental section highlights our model’s efficacy, presenting comparative results compared to the established approaches based on raw cache hits and cache hit rates. 
    more » « less
  3. Content caching is vital for enhancing web server efficiency and reducing network congestion, particularly in platforms predicting user actions Despite many studies conducted to improve cache replacement strategies , there remains space for improvement. This paper introduces STRCacheML, a Machine Learning (ML) assisted Content Caching Policy. STRCacheML leverages available attributes within a platform to make intelligent cache replacement decisions offline. We have t ested various Machine Learning and Deep Learning algorithms to adapt the one with the highest accuracy; we have integrated that algorithm into our cache replacement policy. This selected ML algorithm was employed to estimate the likelihood of cache objects being requested again, an essential factor in cache eviction scenarios. The IMDb dataset, constituting numerous videos with corresponding attributes, was utilized to conduct our experiment. The experimental section highlights our model’s efficacy, present ing comparative results compared to the established approaches based on raw cache hits and cache hit rates. 
    more » « less
  4. Wyld, David C (Ed.)
    Content caching is vital for enhancing web server efficiency and reducing network congestion, particularly in platforms predicting user actions. Despite many studies conducted toimprove cache replacement strategies, there remains space for improvement. This paper introduces STRCacheML, a Machine Learning (ML) assisted Content Caching Policy. STRCacheML leverages available attributes within a platform to make intelligent cache replacement decisions offline. We have tested various Machine Learning and Deep Learning algorithms to adapt the one with the highest accuracy; we have integrated that algorithm into our cache replacement policy. This selected ML algorithm was employed to estimate the likelihood of cache objects being requested again, an essential factor in cache eviction scenarios. The IMDb dataset, constituting numerous videos with corresponding attributes, was utilized to conduct our experiment. The experimental section highlights our model’s efficacy, presenting comparative results compared to the established approaches based on raw cache hits and cache hit rates. 
    more » « less
  5. Wyld, David C (Ed.)
    Content caching is vital for enhancing web server efficiency and reducing network congestion, particularly in platforms predicting user actions. Despite many studies conducted toimprove cache replacement strategies, there remains space for improvement. This paper introduces STRCacheML, a Machine Learning (ML) assisted Content Caching Policy. STRCacheML leverages available attributes within a platform to make intelligent cache replacement decisions offline. We have tested various Machine Learning and Deep Learning algorithms to adapt the one with the highest accuracy; we have integrated that algorithm into our cache replacement policy. This selected ML algorithm was employed to estimate the likelihood of cache objects being requested again, an essential factor in cache eviction scenarios. The IMDb dataset, constituting numerous videos with corresponding attributes, was utilized to conduct our experiment. The experimental section highlights our model’s efficacy, presenting comparative results compared to the established approaches based on raw cache hits and cache hit rates. 
    more » « less