skip to main content


Title: Ray Tracing Analysis for UAV-Assisted Integrated Access and Backhaul Millimeter Wave Networks
The use of Millimeter-wave (mmWave) spectrum in cellular communications has recently attracted growing interest to support the expected massive increase in traffic demands. However, the high path-loss at mmWave frequencies poses severe challenges. In this paper, we analyze the potential coverage gains of using unmanned aerial vehicles (UAVs), as hovering relays, in integrated access and backhaul (IAB) mmWave cellular scenarios. Specifically, we utilize the WinProp software package, which employs ray tracing methodology, to study the propagation characteristics of outdoor mmWave channels at 30 and 60 GHz frequency bands in a Manhattan-like environment. In doing so, we propose the implementation of amplify-and-forward (AF) and decode-and-forward (DF) relaying mechanisms in the WinProp software. We show how the 3D deployment of UAVs can be defined based on the coverage ray tracing maps at access and backhaul links. Furthermore, we propose an adaptive UAV transmission power for the AF relaying. We demonstrate, with the aid of ray tracing simulations, the performance gains of the proposed relaying modes in terms of downlink coverage, and the received signal to interference and noise ratio (SINR).  more » « less
Award ID(s):
1618692
NSF-PAR ID:
10113815
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE 20th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce the concept of using unmanned aerial vehicles (UAVs) as drone base stations for in-band Integrated Access and Backhaul (IB-IAB) scenarios for 5G networks. We first present a system model for forward link transmissions in an IB-IAB multi-tier drone cellular network. We then investigate the key challenges of this scenario and propose a framework that utilizes the flying capabilities of the UAVs as the main degree of freedom to find the optimal precoder design for the backhaul links, user-base station association, UAV 3D hovering locations, and power allocations. We discuss how the proposed algorithm can be utilized to optimize the network performance in both large and small scales. Finally, we use an exhaustive search-based solution to demonstrate the performance gains that can be achieved from the presented algorithm in terms of the received signal to interference plus noise ratio (SINR) and overall network sum-rate. 
    more » « less
  2. In this paper, we consider the problem of constructing paths using decode and forward (DF) relays for millimeter wave (mmWave) backhaul communications in urban environments. Due to the large number of obstacles in urban environments, line-of-sight (LoS) wireless links, which are necessary for backhaul communication, often do not exist between small-cell base stations. To address this, some earlier works proposed creating multi-hop paths that use mmWave relay nodes with LoS communication between every pair of consecutive nodes to form logical links between base stations. We present algorithms, based on a novel widest-path formulation of the problem, for selecting decode and forward relay node locations in such paths. Our main algorithm is the first polynomial-time algorithm that constructs a relay path with a throughput that is proven to be the maximum possible. We also present variations of this algorithm for constrained problems in which: 1) each possible relay location can host only one relay node, and 2) minimizing the number of hops in the relay path is also an objective. For all of the proposed algorithms, the achievable throughput and numbers of relays are evaluated through simulation based on a 3-D model of a section of downtown Atlanta. The results show that, over a large number of random cases, our algorithm can always find paths with very high throughput using a small number of relays. We also compare and contrast the results with our earlier work that studied the use of amplify-and-forward (AF) relays for the same scenario. 
    more » « less
  3. This paper presents mmCPTP, a cross-layer end-toend protocol for fast delivery of data over mmWave channels associated with emerging 5G services. Recent measurement studies of mmWave channels in urban micro cellular deployments show considerable fluctuation in received signal strength along with intermittent outages resulting from user mobility. This results in significant impairment of end-to-end data transfer throughput when regular TCP is used to transport data over such mmWave channels. To address this issue, we propose mmCPTP, a novel cross-layer end-to-end data transfer protocol that sets up a transport plug-in at or near the base station and uses feedback from the lower layer (RLC/MAC) to opportunistically pull data at the mobile client without the slow start and probing delays associated with TCP. The system model and end-to-end protocol architecture are described and compared with TCP and IndirectTCP (I-TCP) in terms of achievable data rate. The proposed mmCPTP protocol is evaluated using NS3 simulation for 5G NR (New Radio) considering a high-speed mobile user scenario. The system is further validated using a proof-of-concept prototype which emulates the high-speed mmWave/NR access link with traffic shaping over Gbps ethernet. Results show significant performance gains for mmCPTP over TCP and I-TCP (2.5x to 17.2x, depending on the version). 
    more » « less
  4. Millimeter-wave (mmWave) cell-free massive multiuser (MU) multiple-input multiple-output (MIMO) systems combine the large bandwidths available at mmWave frequencies with the improved coverage of cell-free systems. However, to combat the high path loss at mmWave frequencies, user equipments (UEs) must form beams in meaningful directions, i.e., to a nearby access point (AP). At the same time, multiple UEs should avoid transmitting to the same AP to reduce MU interference. We propose an interference-aware method for beam alignment (BA) in the cell-free mmWave massive MU-MIMO uplink. In the considered scenario, the APs perform full digital receive beamforming while the UEs perform analog transmit beamforming. We evaluate our method using realistic mmWave channels from a commercial ray-tracer, showing the superiority of the proposed method over omnidirectional transmission as well as over methods that do not take MU interference into account. 
    more » « less
  5. Cooperative relays improve reliability and coverage in wireless networks by providing multiple paths for data transmission. Relaying will play an essential role in vehicular networks at higher frequency bands, where mobility and frequent signal blockages cause link outages. To ensure connectivity in a relay-aided vehicular network, the relay selection policy should be designed to efficiently find unblocked relays. Inspired by recent advances in beam management in mobile millimeter wave (mmWave) networks, this paper address the question: how can the best relay be selected with minimal overhead from beam management? In this regard, we formulate a sequential decision problem to jointly optimize relay selection and beam management. We propose a joint relay selection and beam management policy based on deep reinforcement learning (DRL) using the Markov property of beam in- dices and beam measurements. The proposed DRL-based algorithm learns time-varying thresholds that adapt to the dynamic channel conditions and traffic patterns. Numeri- cal experiments demonstrate that the proposed algorithm outperforms baselines without prior channel knowledge. Moreover, the DRL-based algorithm can maintain high spectral efficiency under fast-varying channels. 
    more » « less