skip to main content


Title: Inception: Virtual Space in Memory Space in Real Space – Memory Forensics of Immersive Virtual Reality with the HTC Vive
Award ID(s):
1748950
NSF-PAR ID:
10113848
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Digital Investigation
Volume:
29
Issue:
S
ISSN:
1742-2876
Page Range / eLocation ID:
S13 to S21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Best student paper award. 
    more » « less
  2. null (Ed.)
    Commodity-level virtual reality equipment is now available to all ages. To better understand how cognitive development affects people's spatial memory in virtual reality, we assess how adults (20-29 years old) and teenagers (14-17 years old) represent their spatial memory of objects in an immersive virtual environment (IVE) where height is encoded. Despite virtual reality being a favorable conduit for the study of egocentric spatial memory, prior studies have predominately looked at objects placed at similar heights. Within a stairwell environment, participants learned the positions of nine target objects. In one condition, all objects were placed near eye height. In another, they were placed at varying heights. Our results indicate that participants' errors and latencies were similar in both environments, and across age groups. Our results have implications for the development of IVEs and the expansion of immersive technology to a more diverse, younger audience. 
    more » « less
  3. This paper presents the concept of creating virtual joints in soft robotic structures by modifying the local curvature of non-stretchable thin-walled structures through shape memory alloy (SMA)-based surface actuation. A thin planar flexible material can be stiffened by curving it along one axis, which increases stiffness by increasing the effective thickness. Locally deforming the curved sheet by making a flat region reduces this thickness, creating a defect. The material buckles and bends in a controlled manner at that location under an external force, producing a virtual compliant joint. We use tailored wire placement techniques to embed a continuous SMA wire in a serpentine pattern into denim cloth stiffened by a thin plastic film. When curved, joints can be created in this structure by activating small segments of the SMA wire using Joule heating which induces local curvature, with each of these segments able to exert up to 1.6 N of force. Finally, we present a circuit and algorithm for routing current through any desired SMA wire segment(s). Experimental results show that compliant joints can be created anywhere along the structure, resulting in a reconfigurable system. 
    more » « less