skip to main content


Title: iFunMed: Integrative functional mediation analysis of GWAS and eQTL studies
Abstract

Genome‐wide association studies (GWAS) have successfully identified thousands of genetic variants contributing to disease and other phenotypes. However, significant obstacles hamper our ability to elucidate causal variants, identify genes affected by causal variants, and characterize the mechanisms by which genotypes influence phenotypes. The increasing availability of genome‐wide functional annotation data is providing unique opportunities to incorporate prior information into the analysis of GWAS to better understand the impact of variants on disease etiology. Although there have been many advances in incorporating prior information into prioritization of trait‐associated variants in GWAS, functional annotation data have played a secondary role in the joint analysis of GWAS and molecular (i.e., expression) quantitative trait loci (eQTL) data in assessing evidence for association. To address this, we develop a novel mediation framework,iFunMed, to integrate GWAS and eQTL data with the utilization of publicly available functional annotation data.iFunMedextends the scope of standard mediation analysis by incorporating information from multiple genetic variants at a time and leveraging variant‐level summary statistics. Data‐driven computational experiments convey how informative annotations improve single‐nucleotide polymorphism (SNP) selection performance while emphasizing robustness ofiFunMedto noninformative annotations. Application to Framingham Heart Study data indicates thatiFunMedis able to boost detection of SNPs with mediation effects that can be attributed to regulatory mechanisms.

 
more » « less
PAR ID:
10114247
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Genetic Epidemiology
Volume:
43
Issue:
7
ISSN:
0741-0395
Page Range / eLocation ID:
p. 742-760
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Although genome-wide association studies (GWAS) have successfully located various genetic variants susceptible to Alzheimer’s Disease (AD), it is still unclear how specific variants interact with genes and tissues to elucidate pathologies associated with AD. Summary-data-based Mendelian Randomization (SMR) addresses this problem through an instrumental variable approach that integrates data from independent GWAS and expression quantitative trait locus (eQTL) studies in order to infer a causal effect of gene expression on a trait.

    Results

    Our study employed the SMR approach to integrate a set of meta-analytic cis-eQTL information from the Genotype-Tissue Expression (GTEx), CommonMind Consortium (CMC), and Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) consortiums with three sets of meta-analysis AD GWAS results.

    Conclusions

    Our analysis identified twelve total gene probes (associated with twelve distinct genes) with a significant association with AD. Four of these genes survived a test of pleiotropy from linkage (the HEIDI test).Three of these genes – RP11-385F7.1, PRSS36, and AC012146.7 – have not yet been reported differentially expressed in the brain in the context of AD, and thus are the novel findings warranting further investigation.

     
    more » « less
  2. Abstract Recent advances in genome sequencing and imputation technologies provide an exciting opportunity to comprehensively study the contribution of genetic variants to complex phenotypes. However, our ability to translate genetic discoveries into mechanistic insights remains limited at this point. In this paper, we propose an efficient knockoff-based method, GhostKnockoff, for genome-wide association studies (GWAS) that leads to improved power and ability to prioritize putative causal variants relative to conventional GWAS approaches. The method requires only Z-scores from conventional GWAS and hence can be easily applied to enhance existing and future studies. The method can also be applied to meta-analysis of multiple GWAS allowing for arbitrary sample overlap. We demonstrate its performance using empirical simulations and two applications: (1) a meta-analysis for Alzheimer’s disease comprising nine overlapping large-scale GWAS, whole-exome and whole-genome sequencing studies and (2) analysis of 1403 binary phenotypes from the UK Biobank data in 408,961 samples of European ancestry. Our results demonstrate that GhostKnockoff can identify putatively functional variants with weaker statistical effects that are missed by conventional association tests. 
    more » « less
  3. Abstract

    Genetic association signals have been mostly found in noncoding regions through genome-wide association studies (GWAS), suggesting the roles of gene expression regulation in human diseases and traits. However, there has been limited success in colocalizing expression quantitative trait locus (eQTL) with disease-associated variants. Mediated expression score regression (MESC) is a recently proposed method to quantify the proportion of trait heritability mediated by genetically regulated gene expressions (GReX). Applications of MESC to GWAS results have yielded low estimation of mediated heritability for many traits. As MESC relies on stringent independence assumptions between cis-eQTL effects, gene effects, and nonmediated SNP effects, it may fail to characterize the true relationships between those effect sizes, which leads to biased results. Here, we consider the robustness of MESC to investigate whether the low fraction of mediated heritability inferred by MESC reflects biological reality for complex traits or is an underestimation caused by model misspecifications. Our results suggest that MESC may lead to biased estimates of mediated heritability with misspecification of gene annotations leading to underestimation, whereas misspecification of SNP annotations may lead to overestimation. Furthermore, errors in eQTL effect estimates may lead to underestimation of mediated heritability.

     
    more » « less
  4. Abstract Background

    Neuropsychiatric disorders afflict a large portion of the global population and constitute a significant source of disability worldwide. Although Genome-wide Association Studies (GWAS) have identified many disorder-associated variants, the underlying regulatory mechanisms linking them to disorders remain elusive, especially those involving distant genomic elements. Expression quantitative trait loci (eQTLs) constitute a powerful means of providing this missing link. However, most eQTL studies in human brains have focused exclusively on cis-eQTLs, which link variants to nearby genes (i.e., those within 1 Mb of a variant). A complete understanding of disease etiology requires a clearer understanding of trans-regulatory mechanisms, which, in turn, entails a detailed analysis of the relationships between variants and expression changes in distant genes.

    Methods

    By leveraging large datasets from the PsychENCODE consortium, we conducted a genome-wide survey of trans-eQTLs in the human dorsolateral prefrontal cortex. We also performed colocalization and mediation analyses to identify mediators in trans-regulation and use trans-eQTLs to link GWAS loci to schizophrenia risk genes.

    Results

    We identified ~80,000 candidate trans-eQTLs (at FDR<0.25) that influence the expression of ~10K target genes (i.e., “trans-eGenes”). We found that many variants associated with these candidate trans-eQTLs overlap with known cis-eQTLs. Moreover, for >60% of these variants (by colocalization), the cis-eQTL’s target gene acts as a mediator for the trans-eQTL SNP's effect on the trans-eGene, highlighting examples of cis-mediation as essential for trans-regulation. Furthermore, many of these colocalized variants fall into a discernable pattern wherein cis-eQTL’s target is a transcription factor or RNA-binding protein, which, in turn, targets the gene associated with the candidate trans-eQTL. Finally, we show that trans-regulatory mechanisms provide valuable insights into psychiatric disorders: beyond what had been possible using only cis-eQTLs, we link an additional 23 GWAS loci and 90 risk genes (using colocalization between candidate trans-eQTLs and schizophrenia GWAS loci).

    Conclusions

    We demonstrate that the transcriptional architecture of the human brain is orchestrated by both cis- and trans-regulatory variants and found that trans-eQTLs provide insights into brain-disease biology.

     
    more » « less
  5. Background

    Genome‐wide association studies (GWAS) have succeeded in identifying tens of thousands of genetic variants associated with complex human traits during the past decade, however, they are still hampered by limited statistical power and difficulties in biological interpretation. With the recent progress in expression quantitative trait loci (eQTL) studies, transcriptome‐wide association studies (TWAS) provide a framework to test for gene‐trait associations by integrating information from GWAS and eQTL studies.

    Results

    In this review, we will introduce the general framework of TWAS, the relevant resources, and the computational tools. Extensions of the original TWAS methods will also be discussed. Furthermore, we will briefly introduce methods that are closely related to TWAS, including MR‐based methods and colocalization approaches. Connection and difference between these approaches will be discussed.

    Conclusion

    Finally, we will summarize strengths, limitations, and potential directions for TWAS.

     
    more » « less