skip to main content

Title: 100 Years of Progress in Boundary Layer Meteorology

Over the last 100 years, boundary layer meteorology grew from the subject of mostly near-surface observations to a field encompassing diverse atmospheric boundary layers (ABLs) around the world. From the start, researchers drew from an ever-expanding set of disciplines—thermodynamics, soil and plant studies, fluid dynamics and turbulence, cloud microphysics, and aerosol studies. Research expanded upward to include the entire ABL in response to the need to know how particles and trace gases dispersed, and later how to represent the ABL in numerical models of weather and climate (starting in the 1970s–80s); taking advantage of the opportunities afforded by the development of large-eddy simulations (1970s), direct numerical simulations (1990s), and a host of instruments to sample the boundary layer in situ and remotely from the surface, the air, and space. Near-surface flux-profile relationships were developed rapidly between the 1940s and 1970s, when rapid progress shifted to the fair-weather convective boundary layer (CBL), though tropical CBL studies date back to the 1940s. In the 1980s, ABL research began to include the interaction of the ABL with the surface and clouds, the first ABL parameterization schemes emerged; and land surface and ocean surface model development blossomed. Research in subsequent decades has focused more » on more complex ABLs, often identified by shortcomings or uncertainties in weather and climate models, including the stable boundary layer, the Arctic boundary layer, cloudy boundary layers, and ABLs over heterogeneous surfaces (including cities). The paper closes with a brief summary, some lessons learned, and a look to the future.

« less
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publication Date:
Journal Name:
Meteorological Monographs
Page Range or eLocation-ID:
p. 9.1-9.85
American Meteorological Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Submesoscale structures fill the ocean surface, and recent numerical simulations and indirect observations suggest that they may extend to the ocean interior. It remains unclear, however, how far-reaching their impact may be—in both space and time, from weather to climate scales. Here transport pathways and the ultimate fate of the Irminger Current water from the continental slope to Labrador Sea interior are investigated through regional ocean simulations. Submesoscale processes modulate this transport and in turn the stratification of the Labrador Sea interior, by controlling the characteristics of the coherent vortices formed along West Greenland. Submesoscale circulations modify and controlmore »the Labrador Sea contribution to the global meridional overturning, with a linear relationship between time-averaged near surface vorticity and/or frontogenetic tendency along the west coast of Greenland, and volume of convected water. This research puts into contest the lesser role of the Labrador Sea in the overall control of the state of the MOC argued through the analysis of recent OSNAP (Overturning in the Subpolar North Atlantic Program) data with respect to estimates from climate models. It also confirms that submesoscale turbulence scales-up to climate relevance, pointing to the urgency of including its advective contribution in Earth systems models.

    « less
  2. Abstract The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim tomore »improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models.« less
  3. Abstract. Due to its remote location and extreme weather conditions, atmospheric in situmeasurements are rare in the Southern Ocean. As a result, aerosol–cloudinteractions in this region are poorly understood and remain a major source ofuncertainty in climate models. This, in turn, contributes substantially topersistent biases in climate model simulations such as the well-known positiveshortwave radiation bias at the surface, as well as biases in numericalweather prediction models and reanalyses. It has been shown in previousstudies that in situ and ground-based remote sensing measurements across theSouthern Ocean are critical for complementing satellite data sets due to theimportance of boundary layer andmore »low-level cloud processes. These processesare poorly sampled by satellite-based measurements and are often obscured bymultiple overlying cloud layers. Satellite measurements also do not constrainthe aerosol–cloud processes very well with imprecise estimation of cloudcondensation nuclei. In this work, we present a comprehensive set of ship-basedaerosol and meteorological observations collected on the 6-weekSouthern Ocean Ross Sea Marine Ecosystem and Environment voyage(TAN1802) voyage of RV Tangaroa across the Southern Ocean, from Wellington, New Zealand, tothe Ross Sea, Antarctica. The voyage was carried out from 8 February to21 March 2018. Many distinct, but contemporaneous, data sets were collectedthroughout the voyage. The compiled data sets include measurements from arange of instruments, such as (i) meteorological conditions at the sea surfaceand profile measurements; (ii) the size and concentration of particles; (iii)trace gases dissolved in the ocean surface such as dimethyl sulfide andcarbonyl sulfide; (iv) and remotely sensed observations of low clouds. Here,we describe the voyage, the instruments, and data processing, and provide a briefoverview of some of the data products available. We encourage the scientificcommunity to use these measurements for further analysis and model evaluationstudies, in particular, for studies of Southern Ocean clouds, aerosol, andtheir interaction. The data sets presented in this study are publiclyavailable at (Kremser et al., 2020).« less
  4. Abstract The simulated winds within the urban canopy of landfalling tropical cyclones are sensitive to the representation of the planetary-boundary and urban-canopy layers in numerical weather prediction models. In order to assess the sub-grid-scale parameterizations of these layers, mesoscale model simulations were executed and evaluated against near-surface observations as the outer wind field of Hurricane Irma (2017) interacted with the built-up region from downtown Miami northward to West Palm Beach. Four model simulations were examined, comprised of two different planetary boundary layer (PBL) parameterizations (a local closure scheme with turbulent kinetic energy prediction and a nonlocal closure scheme) and twomore »different urban canopy models (UCMs) [a zeroth order bulk scheme and a multilayer Building Effect Parameterization (BEP) that mimics the three-dimensionality of buildings]. Overall, the simulated urban canopy winds were weakly sensitive to the PBL scheme and strongly sensitive to the UCM. The bulk simulations compared most favorably to an analyzed wind swath in the urban environment, while the BEP simulations had larger negative biases in the same region. There is uncertainty in magnitude of the urban environment biases due to the lack of many urban sheltered measurements in the wind swath analysis. Biases in the rural environment were similar among the bulk and BEP simulations. An improved comparison with the analyzed wind swath in the urban region was obtained by reducing the drag coefficient in BEP in one of the PBL schemes. The usefulness of BEP was demonstrated in its ability to predict realistic heterogeneous near-surface velocity patterns in urban regions.« less
  5. Abstract In a mesoscale convective system (MCS), convection that redevelops over (i.e., back-builds), and/or repeatedly passes over (i.e., trains) a region for an extended period of time can contribute to extreme rainfall and flash flooding. Past studies have indicated that both mesoscale ascent and lifting of the inflow layer by a cold pool or bore are important when this back-building/training convection is displaced from the leading line [sometimes called rearward off-boundary development (ROD)]. However, Plains Elevated Convection At Night (PECAN) field campaign observations suggest that the stability of the nocturnal boundary layer is highly variable and some MCSs with RODmore »have only a weak surface cold pool. Numerical simulations presented in this study suggest that in an environment with strong boundary layer stability, ROD can be supported by mechanisms other than those mentioned above. Simulations were initialized using a sounding from ahead of a PECAN MCS with a strong stable layer and ROD, and the three-dimensional simulation produced an MCS similar to that observed despite the homogeneous initial conditions. Some of the findings presented herein challenge existing understanding of nocturnal MCSs, and especially how downdrafts interact with a stable boundary layer. Notably, downdrafts can reach the surface, and different regions of the MCS may have different propagation mechanisms and different relevant inflow layers. Unlike previous studies of ROD, parcel lifting may be supported by an intrusion (an elevated layer of downdraft air) modified by the three-dimensional vertical wind shear.« less