skip to main content


Title: Interaction of long‐lived reactive species from cold atmospheric pressure plasma with polymers: Role of macromolecular structure and deep modification of aromatic polymers

We report (a) the deep modification of polymers by long‐lived reactive species generated in atmospheric pressure plasma and (b) the dependence of plasma–polymer interaction on the macromolecular structure. Styrene‐based polymers show significant thickness expansion whereas polymers with methyl, alcohol, and ether side groups show low‐rate etching. The characterization of polystyrene (PS) by X‐ray photoelectron spectroscopy and attenuated total reflectance–Fourier transform infrared shows that plasma treatment destroys aromatic rings and produces ether, ester, and surface organic nitrate groups. These modifications can happen at tens of nanometers below the surface, which we attribute to the reaction–diffusion of plasma species. Comparing three styrene‐based polymers namely PS, poly(4‐methyl styrene), and poly(α‐methyl styrene), we find that long‐lived species primarily attack the C–H bond on the carbon site where the aromatic ring connects.

 
more » « less
NSF-PAR ID:
10114863
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Plasma Processes and Polymers
Volume:
16
Issue:
11
ISSN:
1612-8850
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bottlebrush polymers are complex macromolecules with tunable physical properties dependent on the chemistry and architecture of both the side chains and the backbone. Prior work has demonstrated that bottlebrush polymer additives can be used to control the interfacial properties of blends with linear polymers but has not specifically addressed the effects of bottlebrush side chain microstructures. Here, using a combination of experiments and self-consistent field theory (SCFT) simulations, we investigated the effects of side chain microstructures by comparing the segregation of bottlebrush additives having random copolymer side chains with bottlebrush additives having a mixture of two different homopolymer side chain chemistries. Specifically, we synthesized bottlebrush polymers with either poly(styrene- ran -methyl methacrylate) side chains or with a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA) side chains. The bottlebrush additives were matched in terms of PS and PMMA compositions, and they were blended with linear PS or PMMA chains that ranged in length from shorter to longer than the bottlebrush side chains. Experiments revealed similar behaviors of the two types of bottlebrushes, with a slight preference for mixed side-chain bottlebrushes at the film surface. SCFT simulations were qualitatively consistent with experimental observations, predicting only slight differences in the segregation of bottlebrush additives driven by side chain microstructures. Specifically, these slight differences were driven by the chemistries of the bottlebrush polymer joints and side chain end-groups, which were entropically repelled and attracted to interfaces, respectively. Using SCFT, we also demonstrated that the interfacial behaviors were dominated by entropic effects with high molecular weight linear polymers, leading to enrichment of bottlebrush near interfaces. Surprisingly, the SCFT simulations showed that the chemistry of the joints connecting the bottlebrush backbones and side chains played a more significant role compared with the side chain end groups in affecting differences in surface excess of bottlebrushes with random and mixed side chains. This work provides new insights into the effects of side chain microstructure on segregation of bottlebrush polymer additives. 
    more » « less
  2. The direct-growth technique was used to synthesize several macromonomers (MMs) employing reversible addition–fragmentation chain transfer (RAFT) polymerization by growing directly from a norbornene-functionalized chain transfer agent (CTA). We aimed to investigate the formation of bisnorbornenyl species resulting from radical termination by combination ( i.e. , coupling) during RAFT polymerization at different monomer conversion values in four types of monomers: styrene, tert -butyl acrylate, methyl methacrylate and N -acryloyl morpholine. Ring-opening metathesis polymerization (ROMP) of these MMs using Grubbs' 3rd generation catalyst (G3) at an MM : G3 ratio of 100 : 1 resulted in the formation of bottlebrush polymers. Analysis by size-exclusion chromatography (SEC) revealed high molar mass shoulders of varying intensities attributed to the incorporation of these bisnorbornenyl species to generate dimeric or higher-order bottlebrush polymer oligomers. The monomer type in the RAFT step heavily influenced the amount of these bottlebrush polymer dimers and oligomers, as did the monomer conversion value in the RAFT step: We found that the ROMP of polystyrene MMs with a target backbone degree of polymerization of 100 produced detectable coupling at ≥20% monomer conversion in the RAFT step, while it took ≥80% monomer conversion to observe coupling in the poly( tert -butyl acrylate) MMs. We did not detect coupling in the poly(methyl methacrylate) MMs, but broadening of the SEC peaks and an increase in dispersity occurred, suggesting the presence of metathesis-active alkene-containing chain ends created by disproportionation. Finally, poly( N -acryloyl morpholine) MMs, even when reaching 90% monomer conversion in the RAFT step, showed no detectable coupling in the bottlebrush polymers. These results highlight the importance of monomer choice and RAFT polymerization conditions in making MMs for ROMP grafting-through to make well-defined bottlebrush polymers. 
    more » « less
  3. While the density is a central property of a polymer film, it can be difficult to measure in films with a thickness of ∼100 nm or less, where the structure of the interfaces and the confinement of the polymer chains may perturb the packing and dynamics of the polymers relative to the bulk. This Article demonstrates the use of magneto-Archimedes levitation (MagLev) to estimate the density of thin films of hydrophobic polymers ranging from ∼10 to 1000 nm in thickness by employing a substrate with a water-soluble sacrificial release layer to delaminate the films. We validate the performance of MagLev for this application in the ∼1 μm thickness range by comparing measurements of the densities of several different films of amorphous hydrophobic polymers with their bulk values of density. We apply the technique to films < 100 nm and observe that, in several polymers, there are substantial changes in the levitation height, corresponding to both increases and decreases in the apparent density of the film. These apparent changes in density are verified with a buoyancy control experiment in the absence of paramagnetic ions and magnetic fields. We measure the dependence of density upon thickness for two model polymeric films: poly(styrene) (PS) and poly(methyl methacrylate) (PMMA). We observe that, as the films are made thinner, PS increases in density while PMMA decreases in density and that both exhibit a sigmoidal dependence of density with thickness. Such changes in density with thickness of PS have been previously observed with reflectometric measurements (e.g., ellipsometry, X-ray reflectivity). The interpretation of these measurements, however, has been the subject of an ongoing debate. MagLev is also compatible with nontransparent, rough, heterogeneous polymeric films, which are extremely difficult to measure by alternative means. This technique could be useful to investigate the properties of thin films for coatings, electronic devices, and membrane-based separations and other uses of polymer films. 
    more » « less
  4. Abstract

    Membranes are prepared by self‐assembly and casting of 5 and 13 wt% poly(styrene‐b‐butadiene‐b‐styrene) (PS‐b‐PB‐b‐PS) copolymers solutions in different solvents, followed by immersion in water or ethanol. By controlling the solution‐casting gap, porous films of 50 and 1 µm thickness are obtained. A gradient of increasing pore size is generated as the distance from the surface increased. An ordered porous surface layer with continuous nanochannels can be observed. Its formation is investigated, by using time‐resolved grazing incident small angle X‐ray scattering, electron microscopy, and rheology, suggesting a strong effect of the air–solution interface on the morphology formation. The thin PS‐b‐PB‐b‐PS ordered films are modified, by promoting the photolytic addition of thioglycolic acid to the polybutadiene groups, adding chemical functionality and specific transport characteristics on the preformed nanochannels, without sacrificing the membrane morphology. Photomodification increases fivefold the water permeance to around 2 L m−2h−1bar−1, compared to that of the unmodified one. A rejection of 74% is measured for methyl orange in water. The membranes fabrication with tailored nanochannels and chemical functionalities can be demonstrated using relatively lower cost block copolymers. Casting on porous polyacrylonitrile supports makes the membranes even more scalable and competitive in large scale.

     
    more » « less
  5. Osteoblastic and chemical responses to Poly (ether ether ketone) (PEEK) material have been improved using a variety of low-temperature plasmas (LTPs). Surface chemical properties are modified, and can be used, using low-temperature plasma (LTP) treatments which change surface functional groups. These functional groups increase biomineralization, in simulated body fluid conditions, and cellular viability. PEEK scaffolds were treated, with a variety of LTPs, incubated in simulated body fluids, and then analyzed using multiple techniques. First, scanning electron microscopy (SEM) showed morphological changes in the biomineralization for all samples. Calcein staining, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) confirmed that all low-temperature plasma-treated groups showed higher levels of biomineralization than the control group. MTT cell viability assays showed LTP-treated groups had increased cell viability in comparison to non-LTP-treated controls. PEEK treated with triethyl phosphate plasma (TEP) showed higher levels of cellular viability at 82.91% ± 5.00 (n = 6) and mineralization. These were significantly different to both the methyl methacrylate (MMA) 77.38% ± 1.27, ethylene diamine (EDA) 64.75% ± 6.43 plasma-treated PEEK groups, and the control, non-plasma-treated group 58.80 ± 2.84. FTIR showed higher levels of carbonate and phosphate formation on the TEP-treated PEEK than the other samples; however, calcein staining fluorescence of MMA and TEP-treated PEEK had the highest levels of biomineralization measured by pixel intensity quantification of 101.17 ± 4.63 and 96.35 ± 3.58, respectively, while EDA and control PEEK samples were 89.53 ± 1.74 and 90.49 ± 2.33, respectively. Comparing different LTPs, we showed that modified surface chemistry has quantitatively measurable effects that are favorable to the cellular, biomineralization, and chemical properties of PEEK.

     
    more » « less